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A B S T R A C T

From the perspective of soil engineering, soil is uncertain and heterogeneous. Therefore, if an attempt is made to
determine the soil classification of a soil without a precise test, for example, an engineer’s individual judgement is
often involved in making the determination based on his/her own experiences. In relation to acquiring vast and
varied knowledge which is easily influenced by individual experiences, the purpose of this study is to gather the
know-how of engineers and to create a certain index for use in making on-site judgments that are likely to be more
inclusive of various data than those of individual engineers. This study discusses the potential of image recog-
nition by artificial intelligence, using a machine learning technique called deep learning, for the purpose of
expanding the cases which employ artificial intelligence. Deep learning was performed with a model using a
neural network in this study. For three types of soil, namely, clay, sand, and gravel, an AI model was created that
was conscious of the practical simplicity of the images used. It was shown that artificial intelligence, along with
deep learning, can be applied to soil classification determination by performing simple deep learning with a
model using a neural network.
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1. Introduction

In recent years, the working-age population in Japan has been
declining, and it is estimated that it will continue to decline in the future.
This means a shortage of human resources in every industry, and the civil
engineering and construction industries are no exception [1]. The lack of
human resources will not only result in a shortage of workers, but will
also create an increase in the proportion of foreign workers in each
profession. Under such circumstances, it is possible that the technologies
and data held by the engineers involved in this work will disappear
before they can be satisfactorily passed down to others. In addition, there
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engineers.

In terms of soil mechanics and geotechnical engineering, the ground
is basically uncertain and heterogeneous (inhomogeneous) because the
inside cannot be visually inspected and easy predictions are not possible.
Therefore, if an attempt is made to classify a certain type of soil without a
precise test, for example, an individual’s experience may be involved in
making the determination. This leads to it being difficult for engineers to
make judgements on soil classification with the same degree of accuracy.

In relation to the uncertainties that make it nearly impossible to
guarantee the succession of knowledge and a certain degree of accuracy,
this study introduces a method for accumulating and passing down the
knowledge of engineers, while also maintaining a certain level of accu-
racy. The purpose is to expand the use of artificial intelligence (AI) in the
field of geotechnical engineering in order to create an index, and shows
the possibility of image recognition by AI using machine learning in the
field of geotechnical engineering.
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Fig. 1. Image of hierarchical neural network.

Fig. 2. Image of model used in deep learning.
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As an example of previous studies in geotechnical engineering and
related fields, Ito [2] prepared 150 sample photographs for three types of
soil, namely, organic soil, gravel-mixed sand, and silt-mixed sand. As a
result, it was shown that the rate of accuracy obtained by the model (the
predictive value of the model against the real phenomenon) improved as
the number of learning sessions was increased to 30, 100, 300, and 1000
times. On the other hand, when the 150 sample photographs were con-
verted to grayscale, the black organic soil became almost black and the
features of the images were lost. This led to the problem of the black
organic soil images being erroneously recognized as silt-blended sand
with few features. In addition, in the study by Kiso-Jiban Consultants Co.,
Ltd. (2019) [3], an AI program using deep learning was developed for
three types of rock images, namely, granite, andesite, and mudstone,
taken with a digital camera instead of a high-precision camera, such as a
single-lens reflex camera. As a result, the rate of accuracy of the AI
program was 88% for a total of 100 rock images consisting of 60 granite,
20 andesite, and 20 mudstone pieces. Furthermore, it was shown that the
accuracy of this AI program determination exceeded that of geologists
and soil engineers. In addition, Koszela et al. [4]; Pegalajar et al. [5]; and
Shojaei et al. [6–8] are making advanced attempts to apply AI programs
in the field of civil engineering, especially in the field of geoengineering.

In this study, deep learning was performed with a model using a
neural network. For three types of soil, namely, clay, sand, and gravel, an
AI model was created that was conscious of the practical simplicity of the
images used. It is verified that the model misrecognition caused by the
loss of image features reported in Ito’s study [2] occurs even when
another soil type is set as the discrimination target. In addition, although
a digital camera was used in the study by Kiso-Jiban Consultants Co, Ltd.
(2019), the authors will examine here whether a smartphone with
different features from a digital camera can be applied to an AI program.

2. Literature review for imaging recognition and machine
learning

2.1. Neural network

A neural network is a model that mathematically represents the nerve
cells in the human brain and their connections. The neurons that make up
the network are composed of four parts: the cell body, dendrites, axons,
and synapses [9]. Among them, the dendrites function as input terminals
that receive information, and the synapses function as output terminals
that lead to the dendrites of other neurons. In the human brain, neurons
transmit signals by changing potentials. Although there is a difference in
potentials between a neuron and the extracellular fluid around it, the
potential rises when a signal is input to the neuron, and when a certain
threshold is exceeded, information is transmitted to the next neuron. In
addition, the synaptic information transmission efficiency is different.
The difference in transmission efficiency for each synapse is expressed by
the connection weight given for each piece of input information. An
arbitrary real value is given to the connection weight. The response of the
activation function is obtained based on the input weighted by this
connection weight. The response is returned as a numerical value by the
activation function.

A neural network is a network that connects a large number of
modeled neurons (hereinafter referred to as formal neurons) to process
the input information, and it connects these formal neurons in layers. In
the hierarchical neural network, the first layer, that is, the layer on the
left side of Fig. 1, is called the input layer. It is the layer that receives the
data information first. The last layer of the network, that is, the layer on
the right side of Fig. 1, is called the output layer. It is the layer that
outputs the final calculation results. The layer between the input layer
and the output layer is called the hidden layer (or intermediate layer). It
receives the output from the previous layer, performs the calculation, and
outputs the results to the next layer. In the neural network, the structure
of this middle layer has a high degree of freedom, which allows for
flexible operations according to the purpose.
2

In this study, a learning model is constructed by adopting the con-
volutional neural network [10], which is a type of hierarchical neural
network that has been successful in tasks related to vision.
2.2. Deep learning

Deep learning is a machine learning technique; it involves using a
model constructed by stacking many hidden layers of a neural network
[11,12]. The network consists of three types of layers: input layer, hidden
layer, and output layer. In the network shown in Fig. 2, the left side is the
input layer, the right side is the output layer, and the hidden layer is
between them. Many of the conventional neural networks have few
hidden layers, but the number of hidden layers can be increased, deep-
ening the whole hierarchy, which is the reason why it is called deep
learning.

The features of deep learning are that the number of hidden layers can
be increased, which makes it possible to perform more complex function
approximations than a conventional neural network with few hidden
layers. Moreover, the features of the objects to be recognized, such as
images, can be automatically extracted, as will be explained in the
following. The term "features" is used here to refer to the unique char-
acteristics of an image. As an example, if the image is one of a human
face, there will be "one unique shape at the upper left and at the upper
right of the image (with eyes)" and "one unique shape at the bottom of the
image (with a mouth)" etc. It is the property of the data itself.

If deep learning is not used, it will be necessary to manually extract
the features of the object to be recognized, such as an image, and to input
it as a set with the images. For this reason, difficulties will be encoun-
tered, such as an increase in the time and effort required for the work and
different ways of capturing the features extracted to increase the recog-
nition rate. If a human being can easily think "Where are the features?",
like of the human face, the latter difficulty can be disregarded to some
extent. When it comes to treating soil, however, such as in this study, it
becomes difficult to determine what the characteristics or features are. It
is hard to decide what to consider or examine.

With deep learning, however, this feature-extraction work can be
performed without human processing, and images can be recognized. In
other words, it is possible to achieve high accuracy even for images from
which it is difficult to extract features. This is also a reason why deep
learning is used in this study, namely, because it is compatible with



Fig. 3. Schematic of steepest descent method [13,14].
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things such as sand and clay for which it is difficult for humans to
objectively define what to extract. Looking at the conventional method as
an example, the method called support vector machine (hereinafter
abbreviated as SVM) is advantageous in that the number of required
learning sessions is small because there are few parameters to be opti-
mized, but the accuracy of various data is measured. Therefore, it is
necessary to perform a process called cross validation. This process in-
volves dividing the data collected as a sample into training and verifi-
cation, and then learning and verifying the model. In order to divide the
data so that all the data are selected as either training data or verification
data, as much as possible, it is necessary to perform the learning and
verification steps repeatedly by changing the method multiple times.
Therefore, as the amount of data increases, the computational cost be-
comes enormous. Therefore, addressing a way to limit the computational
cost was also significant in this study.

3. Conduct model learning

3.1. Learning method

The connection weight is applied as the input to the formal neuron. As
can be expressed by Eq. (1), firstly, the sum of the products of the input
and the connection weight (called the net value, u) is obtained. The
sigmoid function in Eq. (2) is used as the activation function for finding
the output of the unit based on the net value. In this study, the sigmoid
function was selected in consideration of the ease of calculation and the
expression for backpropagation to be described later.

u¼X1W1 þ X2W2…þ XnWn ¼
Xn

i¼1

XiWi (1)

where X is the input and W is the coupling weight.

fðxÞ¼ 1
1þ e�x

(2)

Using sigmoid function f(x) for net value u, to represent the final
output of the neuron, the following form is obtained for Eq. (3):

y¼ fðuÞ (3)

The "error" in this study is the sum of the squares of the difference
between the true value (called the teacher signal), based on the prepared
data, and the output of the model expressed by Eq. (3), etc. This is called
the error function, namely, error function E when there are n formal
neurons in the output layer as can be expressed in Eq. (4).

E¼ 1
2

Xn

i¼1

ðoi � tiÞ2 (4)

where o is the output and t is the teacher signal.
“Learning” refers to changing the value of the coupling weight in

order to minimize the value of the error function. In this study, back-
propagation is used for learning. This is because "the data input from the
input layer is transmitted to the intermediate layer and output is per-
formed at the output layer. This is done by updating the coupling load
between the two and updating the coupling load between the middle
layer and the input layer” [13,14]. A method called the steepest descent
method is used when updating the connection weight.

In the steepest descent method, the error and the joint weight (an
arbitrary real value) are considered, as shown in Fig. 3. From this figure,
it can be seen that the error varies depending on the value of the joint
load. In the steepest descent method, the gradient in Fig. 3 is calculated
by Eq. (5), and by multiplying this by�1 and the learning coefficient, the
value that modifies the coupling load in the opposite direction to the
gradient can be calculated [13,14].
3

∂E
∂W (5)
where E is the error and W is the coupling weight.
The connection weight can be updated by applying the value at the

present time to the connection weight, and this updating process is called
learning. The steepest descent method is used to obtain the connection
weight that minimizes the error by updating the connection weight in
this way.

Because this correction amount is obtained by multiplying the
learning coefficient by the gradient in Eq. (5), the coupling weight is
updated by increases or decreases depending on the size of the learning
coefficient. Therefore, if the learning coefficient is too large, there is a
possibility of jumping over the coupling weight (called the optimal so-
lution) where the error becomes the smallest. On the other hand, if the
learning coefficient is too small, the update width in one learning session
becomes small, and the number of learning sessions required to reach the
optimum solution increases. Not only that, but if there is a value (local
solution) for which the error function takes a minimum value before the
optimal solution, the update of the connection weight may stop at the
local solution and the optimal solution may not be reached. Considering
these factors, it is necessary to find a learning coefficient suitable for the
model and the data used for learning.

In addition, when using the sigmoid function as the activation func-
tion, it is necessary to pay attention to the problem of gradient disap-
pearance. The maximum value of the gradient of the function used for
parameter adjustment, that is, the derivative value, is 0.25 in the sigmoid
function. Therefore, in backpropagation in which the coupling load is
adjusted from the output layer to the input layer, a value that is less than
0.25 is multiplied in each layer that is processed later, and the amount of
fluctuation tends to be small. Therefore, if there are many layers that use
the sigmoid function, the gradient required for adjustment may almost be
eliminated, especially when there are four or more layers. The above is an
outline of the gradient vanishing problem. In this study, the influence of
the vanishing gradient problem is reduced by using three layers and
employing the sigmoid function.

3.1.1. Image used
The purpose of this study is to create the basis for a model to be used

to make judgements on soil classification that can be utilized on a site-by-
site basis. For this reason, the soils to be classified were divided into three
types: clay (D50 ¼ 0.008 mm), sand (D50 ¼ 0.7 mm), and gravel (D50 ¼
4mm) with the water content adjusted to 0 for simplicity. Clay, sand, and
gravel, whose particle sizes were adjusted by conducting a sieving test,
were put in a transparent plastic cup as shown in Fig. 4, considering this
practice as a difference from the previous studies [2,3,15]. The images
were taken with a smartphone (iPhone 7) camera. Comparing the per-
formances of the smartphone camera and the digital camera (FUJIFILM
X-T4) released at the time of the experiment, the iPhone 7 has 12 million



Fig. 4. Examples of soil image used to develop AI program for soil classification.
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pixels and the digital camera has 26 million pixels. In addition, the size of
the image sensor related to image noise (the larger the image, the more
faithful the image to the subject) is 4.8 � 3.6 mm for the iPhone 7 and
23.5 � 15.6 mm for the digital camera. It is seen that the photographs
were shot indoors. As for the clay, 200 photographs were taken both with
and without lighting (400 in total). As for the sand, 200 photographs
were also taken with and without lighting (400 in total). As for the
gravel, 100 photographs were taken with and without lighting (200 in
total). In order to see the influence of the difference in the amount of data
on the learning results, only the gravel had a different amount of data. In
order to secure the data variation, adjustments such as switching the
presence or absence of lighting during shooting and adding vibration or
rotation to the cup to change the appearance of the surface were added.
Vibration was applied so that the arrangement of the particles on the
sample surface would be completely different, and rotation was per-
formed in 90-degree units. These processes were combined to prevent the
data from becoming uniform. This is because, even if a large number of
identical images are copied and prepared, the effect of the learningmodel
will be weak.

Table 1 presents a list of prepared images. These 1000 images were
used as the learning data, and a total of 60 images of each randomly
selected 20 images were used as model accuracy verification data.

3.1.2. Parameters used
In this study, the soil images were learned as a model using deep

learning by the convolutional neural network and by the steepest descent
method. At that time, each parameter was set as shown in Table 2.

Regarding the learning coefficient, 1e-1 to 1e-9 were tested. Finally,
1e-6 was chosen; it was the only coefficient which yielded a significant
result in the model of this study. With the other learning coefficients, the
accuracy did not improve even if the number of learning sessions was
increased, and only the accuracy of the learning data became extremely
high, and the accuracy of the model for unknown data, such as verifi-
cation data, did not improve. What occurred was the phenomenon of
overlearning and the learning did not proceed normally.

The batch size represents the number of learning images divided into
groups and used in one learning session. Because processing, such as
updating the parameters of the connection weight, is performed for each
group, the number of parameter updates increases and the learning time
increases when the batch size is small, that is, the number of groups is
large. In consideration of the balance between the required time and the
number of trials, the batch size was set to 20 in this study.

The number of times of learning is literally set to how many times to
learn, but if the number of times is too small, sufficient accuracy cannot
be obtained, and if it is too large, a phenomenon called overlearning
occurs depending on the learning coefficient. Here, overlearning means
that the model is over-optimized to the characteristics of the training data
and loses its versatility with respect to other unknown data such as
verification data and new data to be judged after the training. This
versatility for various data is called generalization performance, which is
the performance that should be emphasized when creating a model.
When compared with humans, it is similar to the situation in which the
scores of other tests are low compared to a certain one, although all the
scores for the test are all very high, because the students studied very
Table 1
Types and numbers of images taken.

Clay Sand Gravel (Total)

Presence of lighting 200 200 100 500
Absence of lighting 200 200 100 500
(Total) 400 400 200 1000



Table 2
Parameters used.

Learning coefficient 1e-06

Batch size 20
Number of times of learning 70
Image size during learning (px) 56 � 56
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diligently for the test. When the model overlearns in this study, the ac-
curacy of the image classification for clay, sand, and gravel used for
learning becomes very high. However, when the completed model is put
into practical use, the classification accuracy with other captured images
of clay, sand and gravel will be low.

To prevent overlearning, the model first learns the characteristics of
the data, and then terminates the learning when the accuracy has
increased moderately. For example, if 100 learning sessions causes
overlearning, it means that less than 90 or 80 sessions will complete the
learning process. In addition, it is effective to increase the sample data for
learning. In the first place, over-learning means that the model is opti-
mized for sample data with limited variations and cannot be applied to
new data, that is, unknown variation data. Therefore, it is also important
to suppress over-learning by increasing the variation of the data prepared
as a sample (soil quality in the case of the model of this study) as much as
possible and reducing the variation unknown to the model.

Also, the number learning sessions is directly related to the time
required for learning. The PC used in this study required about 2 h for 70
learning sessions, so the study was forced to continue for 70 sessions. In
this study, the CPU was Intel Core i5-3320 M 2.6 GHz, and the internal
GPU was an Intel HD Graphics 4000 notebook PC.

Also, in order to reduce the processing load on the program, the
number of pixels in the image was reduced. In this study, the image was
resized to 56 � 56 pixels and then processed. Regarding the number of
pixels, when initially learning with 26 � 26 pixels, the model sometimes
could not identify the characteristics of sand and gravel, and judged all
the gravel images as sand. After that, when the size was changed to 56 �
56 pixels, an improvement was found in its ability to discriminate be-
tween sand and gravel. In this study, therefore, learning was finally
conducted with images of 56 � 56 pixels.
Fig. 5. Image of model’s multi-layer structure [16–18].
3.2. Learning flow and implementation

3.2.1. Flow of learning
In this study, Python (Ver. 3.6.6) was used as the programming lan-

guage and Tensorflow (Ver. 1.9.0) [16–18], published by Google Inc.,
was used as the library of functions required for learning.

The model constructed in this study mainly consists of two convolu-
tional layers, two pooling layers, and a fully connected layer. In Fig. 5,
“conv” corresponds to the convolutional layers and “pool” corresponds to
the pooling layers. These layers sequentially detect and process image
features and pass them on to the next layer. Furthermore, after detecting
the features in all layers, the prediction of the learned model and the true
value of the image are compared, and if there is an error, the weight of
the connection weight is updated according to the error. At this time, the
algorithm for correcting the connection weight, shown in Fig. 3 and
based on the error, is a training algorithm called AdamOptimizer, pro-
vided by Tensorflow. Adam, shown in Fig. 5, represents this. The pro-
cedure is repeated to reduce the error. It should be noted that “init” in
Fig. 5 represents the process of initializing the parameters and starting
the calculation associated with learning, and that “gradients” represents
the process associated with the gradients of the error function.

As a concrete flow, the feature of the image is detected in the first
convolutional layer (conv1). In the first place, faster images are innu-
merable squares with slightly different colors when enlarged. Each of
these squares is called a pixel. In this study, the image is resized to 56 �
56 pixels and treated; the images with 56 � 56 squares are lined up and
should be considered. Each pixel has a value of 0–255 as data for each of
5

the three colors of red, green, and blue. In this study, the image is con-
verted to grayscale. Therefore, the color data held by each pixel is a
numerical value with 256 levels from 0 to 255. It is thought that the
numbers from 0 to 255 are lined up in 56 � 56 pieces. Fig. 6 illustrates
this. In this way, while numerical data are arranged for each pixel, in the
first convolution layer, the numerical values are compressed in the range
of 5 � 5 pixels from the upper left portion of the image. At this time, as
shown in Fig. 7, the weight parameter in the range of 5 � 5 (this size is
arbitrary), called the kernel, is applied to the range of 5 � 5 pixels from
the upper left portion of Fig. 6, and the corresponding cells are multiplied
by a numerical value. In this case, the numerical value in the upper left
portion (first row, first column) in the image data of Fig. 6 is 39, and the
corresponding value of the kernel is also 0 in the first row, first column.
39 is multiplied by 0 which yields 0 as the product as the first solution.
Next, looking to the right, the number at the first row and second column
in Fig. 6 is 38, and the corresponding number in Fig. 7 is �1. If these are
multiplied, �38 is obtained as the second solution. This operation is
performed in the range of 5 � 5, which is the size of the kernel, and the
sum of all the 25 products obtained is 28. This total becomes the nu-
merical data in the first row and first column of the compressed image.
After that, the same calculation is repeated by shifting the range to which
the kernel is applied by 1 pixel. This series of operations is called
convolution. In the model of this study, two convolution layers are used.

After convolution in the convolution layers, the work of blurring the
image features is performed in each pooling layer. Here, the numerical



Fig. 6. Image of digitizing images [10].

Fig. 7. 5 � 5 kernel (Ng et al., 2020).

Fig. 8. Part of the program.

Fig. 9. Transition of accuracy with learning coefficient 1e-4.
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data of the image input to each pooling layer is compressed to 1� 1 pixel
every 2 � 2 pixels from the edge [19]). That is, when processing is
applied to a 4� 4 pixel image, it is output as 2� 2 pixel data. In this way,
the number of pixels in the image is halved as it passes through each
pooling layer.

After detecting the features of the image in these layers, the output of
the neural network is finally converted into the probability by the Soft-
max function to calculate what kind of error exists between the model
prediction and the true value for the image. Here, the true value is the
name of the soil featured in the image given to the model, for example, in
this study. As a concrete example, if an image showing sand is given to
the model, the true value is "sand", and if the prediction result of the
model is "sand", the answer is correct; otherwise it is incorrect. After
these processes, the weight of the connection weight is updated ac-
cording to the calculated error.

The multi-layer structure of the convolutional layers and the pooling
6

layers, shown in Fig. 5, can be expressed in an actual program, as shown
in Fig. 8. In the code in this figure, four groups separated by blank lines
correspond to the first and second convolutional layers and the first and
second pooling layers, respectively. Because these structures can be
freely modified, such as by increasing or decreasing the number of con-
volutional/pooling layers, it is possible to make them into a suitable form
according to the type of data to be classified, if necessary.

3.2.2. Implementation of learning
The model was trained using the model of the structure shown in

Fig. 5 and the parameters shown in Table 2. The personal computer used
in this study required about 2 h for 70 learning sessions.

The parameters finally adopted in this study are summarized in
Table 2, but multiple cases were also conducted here with different
learning coefficients. Although 1e-1 to 1e-2, 1e-3… and 1e-9 were tried,
significant results were obtained only in the case of 1e-6. Examples of
unsuccessful cases were cases in which the accuracy did not improve
even after repeated learning sessioins, as shown in Fig. 9, or over-
learning, as shown in Fig. 10.

4. Learning results and considerations

4.1. Results of learning

Fig. 11 shows the transition of accuracy with respect to the number of
learning sessions. The transition of the error is shown in Fig. 12. From
these figures, it can be seen that the accuracy improves and the error
decreases as the number of learning sessions increases. The error referred
to here is the one defined by Eq. (4). Finally, an accuracy of about 86%
was recorded for the image data for learning and about 77% for the data
for verification. Here, the accuracy is the rate at which the images of clay,
sand, and gravel used for learning can be accurately identified. In other
words, out of a total of 1000 learning data images, about 86% (about
860) of the images were correctly classified.



Fig. 10. Transition of accuracy with learning coefficient 1e-5.

Fig. 11. Transition of accuracy with learning coefficient 1e-6.

Fig. 12. Transition of error in learning coefficient 1e-6.
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In order to confirm whether the model can correctly recognize the
training data, Table 3 shows the judgment results for each soil type
among the training data. The table shows how the model determined
each soil type. For example, as a result of inputting 400 learning images
showing clay as a true value into the model, 313 of the images were
Table 3
Judgment results for each soil type.

True value Clay Sand

Class Clay Sand Gravel Clay

Judgment result 313 87 0 0

7

determined to be clay. At the same time, 87 of the images had the true
value of clay, but the model misidentified them as sand. From the table, it
can be seen that all the sand was correctly recognized and only about half
of the gravel was correctly recognized. In particular, the gravel and clay
were often mistaken for sand.

For these results, the evaluation index for the trained model is
applied. Equation (6) represents the recall.

x
n
¼ x
xþ y

(6)

where n is the number of data of a specific class C, x is the number of data
classified into class C, and y is the number of data classified into other
classes.

The recall is an index that focuses on the true class of the images to be
classified, and refers to the ratio of the images in which the model can be
accurately recognized as sand, for example, of the images in which what
is truly sand is shown. When this model is evaluated using the recall, the
recall of sand is 1, and it seems that sand can be recognized very accu-
rately. On the other hand, the recall rate of gravel is about 0.54; thus it
seems that gravel cannot be recognized accurately.

Now, an attempt is made to find the precision rate, which is another
index. The precision is calculated by Eq. (7).

w
wþ z

(7)

where w is the number of data samples that truly belongs to class C
among the data classified into class C, and z is the number of data samples
that does not belong to class C among the data classified into class C.

The relevance ratio is an index that focuses on the previous class into
which the images have been classified and, for example, refers to the
ratio of images that are truly clay in the image group that the model has
determined to be clay. In other words, it is an index showing how care-
fully the clay is classified, and whether non-clay has been classified as
clay. When the model is evaluated using the precision rate, the precision
rate is 1 for gravel, which had a low recall of 0.54. In other words, the
gravel images are classified into another class at a rate of about 46%, but
all the images recognized as the remaining gravel were truly gravel. In
this way, recall and precision are in a trade-off relationship, and if either
increases, the other decreases. Therefore, it is difficult to evaluate the
model satisfactorily using either the recall rate or the precision rate. In
this study, the F value, which is an index for integrating these two rates
(recall and precision), is used. The F value is the harmonic mean of recall
and precision, and is calculated by Eq. (8) [20,21].

A model that increases this F value is considered to be good [22].

F�measure ¼ 2*Pre*Rec
Preþ Rec

(8)

where Pre is the precision and Rec is the recall.
Table 4 shows the recall, precision, and F value.
4.2. Considerations of learning

When the learning session results were summarized, the accuracy of
the learning images was about 86% and the accuracy of the verification
data was about 77% through 70 learning sessions.

When the evaluation index was applied to the 1000 sheets of data
used for learning, the sand recall rate was extremely high at 1. This
Gravel

Sand Gravel Clay Sand Gravel

400 0 10 83 107



Table 4
Results of learning with 56 pixels (Each evaluation index).

Number of
data images

Correctly classified
number of data images

Recall Precision F
value

Clay 400 313 0.78 0.97 0.87
Sand 400 400 1 0.70 0.82
Gravel 200 107 0.54 1 0.70

Table 5
Results of learning with 28 pixels (Each evaluation index).

Number of
data images

Correctly classified
number of data images

Recall Precision F
value

Clay 400 392 0.98 1 0.99
Sand 400 400 1 0.74 0.85
Gravel 200 0 0 0 0
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means that all the sand images could be identified as sand. On the other
hand, the reproducibility of gravel and clay was low, with the repro-
ducibility of gravel at only 0.54. To address this low rate, it is thought
that the model could not learn the characteristics of clay and gravel
satisfactorily, and thus, mistakenly recognized them as another soil type.
The number of pixels after resizing the image was too small, and the
original features of the image were destroyed, so they could not be
detected satisfactorily. In addition to this, it is possible that the number of
learning sessions was small, especially for gravel, and that the number of
learning images was also small. From Table 3, almost all the false posi-
tives were for sand.

If the image size during the learning session is too small, the features
of the image cannot be extracted satisfactorily, which is unsuitable.
However, if the image size is too large, the time and mechanical cost for
the learning session will increase, so care must be taken when setting the
image size during learning. In this study, a policy was set to gradually
increase the image size from a small value of 28 � 28 pixels while
checking the results. As a result, movement was seen in the second 56 �
56 pixels; and thus, the value of 56 � 56 pixels was used here. However,
from the viewpoint of optimal parameter setting, it is also important to
continue to increase the size. If the computer used for learning has a high
performance, it is considered to be effective if the image size is started
from a large value and then adjustments are made based on the results,
such as decreasing the size.

In addition, before using the parameters shown in Table 2, learning
was performed with an image size of 28 � 28 pixels. At that time, as
shown in Table 5, the model mistakenly recognized all the gravel images
as sand. After that, when learning was performed with the image size set
to 56 � 56 pixels, as shown in Table 4, about half of the gravel images
were accurately discriminated.

From these, the reason why the soil characteristics cannot be accu-
rately recognized is that the image size during learning is small. Because
the learning rate was improved when the size was expanded from the first
learning with 28 pixels to 56 pixels, it can be assumed that increasing the
image size for gravel will lead to an improvement in the recall rate …

A comparison of the clay recall and the precision rate in the 28 pixel
case and the 56 pixel case shows a slight decrease in the 56 pixel case.
The direct reason for the decrease in recall was that the number of false
positives for clay as sand increased. This is thought to be due to the
difference in the number of learning sessions. In the case of 28 pixels, the
learning session is performed 100 times, while in the case of 56 pixels,
the learning session is performed 70 times. It can be said that the number
of cases in which clay images were correctly classified can be said to be
large because the characteristics of clay can be learned relatively well in
the case of 28 pixels by the difference of 30 times. The reason for the
decrease in the precision is that the characteristics of the image of gravel
can be recognized normally and, as a result, gravel is sometimes mistaken
for clay. That is, in the case where the number of pixels was small, all 200
images of gravel were mistaken for sand, but in the case where the
number of pixels was large, 83 images of gravel were mistaken for sand
and 10 for clay. These 10 pieces reduce the compatibility of clay.

There are differences in the F value between sand/clay and gravel,
which indicate that the characteristics of gravel are not sufficiently
detected. The reason is thought to be that the number of pixels for
learning is small and the amount of gravel learning data is less than that
of clay or sand. The data belonging to such a data group in which the
numbers are not balanced are called imbalanced data. When learning
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with imbalanced data, the features obtained from each data set are
weighted. However, it is necessary to take measures, such as learning the
features of the small amount of data well. Because this processing was not
performed this time, it is considered that the difference in the amounts of
data affects the difference in the F value. The overall balance of the F
values can be improved by increasing the number of pixels during the
learning sessions, as described above, and by making the amounts of
learning data sets sufficiently uniform and even.

As for sand, the results of this study show that the precision rate of
sand is particularly low. This is because there were many cases where the
images of clay and gravel were mistakenly recognized as sand. The false
recognition was based on the above consideration, as well as on the
number of pixels in the image during learning, the number learning
sessions, and the number of data images for learning. It is thought that
this is a structure in which many images look like sand to the model
because the elements on the model side, such as balance, and the ele-
ments on the image side, such as grain size (feature distribution) and
shadow, did not mesh well.

The low precision means that the models classified as A are mixed
with those different from B or C…. If a model with such a defect were to
be put into practical use, naturally there would be a problem with reli-
ability, but as in the model of this study, the precision rate was low only
in a specific class, and the precision rate was low in other classes. If the
model tends to be high, even if it is put to practical use as it is, it can be
used to some extent by being captured by the user. In other words, if only
the sand has a low matching rate, the reliability of the model in judging
gravel or clay is guaranteed to have a certain accuracy. The user would
then need to be careful when judging whether or not it is sand. However,
variations in recall, precision, and the F value are not sufficient in-
dicators, so it is important to review the learning parameters and to
create a model with a better evaluation index, such as the F value.

The overall level of accuracy can be expected to improve to a certain
degree by increasing the number of learning sessions. In this study,
learning sessions were performed 70 times in order to balance the time
required by the PC (used) and the number of trials, but it is highly
possible that the learning was completed before the accuracy was
deemed satisfactory at 70 sessions. Therefore, it is thought that
increasing the number of learning sessions, while paying attention to
prevent overlearning, will lead to the improvement of the model.

In addition, learning and classification were performed in this study
by targeting only three types of soil. However, considering further
development, not only the adjustment of parameters but the expansion of
corresponding soil is the first issue. As shown in Fig. 13, clay and sand,
which look very similar to human eyes, can be discriminated by the
model. It is possible to obtain a generalization performance for various
types of soils by preparing several types, securing a sufficient amount of
data for learning, and conducting the learning sessions with a sufficiently
large number of pixels. It is thought that this will soon be possible.

In addition, considering the practicality in the field, if it becomes
possible to roughly determine the classification and mixing state of
gravel, sand, silt and clay, it can be said that the utility as a rudimentary
index will be created. Furthermore, instead of a model that simply dis-
criminates soil types, a model that is specialized only for soils with a
specific tendency will come into view. For example, it would be very
beneficial if there were a model that could determine whether or not a
certain kind of sandy soil, for example, had a high risk of liquefaction, in
order to determine the risk of liquefaction.



Fig. 13. Examples of images that could be accurately identified by the devel-
oped AI program.
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5. Conclusions

In this study, deep learning was performed with a model using a
neural network. For three types of soil, namely, clay, sand, and gravel, an
AI model was created that was conscious of the practical simplicity of the
images used. It was shown that this AI model can be applied to make
judgments on soil classification. As a result, a high recall rate of 1 was
obtained for sand. This means that all the sand images could be identified
as sand. On the other hand, a high matching rate was obtained for clay
and gravel. This means that images of clay and gravel can be carefully
discriminated without much mixing of different types of images.
Regarding the parameters, if the number of pixels in the image during the
learning sessions is too small, the features of the images cannot be
detected sufficiently and the accuracy decreases. If the number of pixels
is increased, the features can be detected and the accuracy increases.

There are two issues to be addressed in the future: the further
adjustment of the parameters related to learning, such as the above-
mentioned number of pixels, and securing a sufficient number of
learning sessions and verification data. Regarding the parameters, only
9

the four parameters shown in Table 2 were adjusted in this study.
However, in addition to the initial values of the coupling load and the
parameters, the number and the structure of the convolutional layers and
the pooling layers, etc. are among the many things that can be adjusted.
Regarding the number of data samples, an unbalanced number of images
was used for learning in this study, so it will be necessary to secure a
sufficient number of data samples for the learning of clay, sand, and
gravel to correct this imbalance.
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