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A B S T R A C T

Cracking failure of a curved laminated lumber might occur due to transverse stress under a curvature-decreasing
bending moment. From both safety and cost perspectives, it is essential to understanding the failure moments and
failure modes of curved laminated lumber. While the existing equation to calculate the transverse stress of a
curved laminated lumber under a bending moment applied in most literatures is approximate and may cause
considerable errors when the initial curvature of beam is small. This is detrimental to the design of curved
laminated timber. To solve this problem, we proposed a new equation of bending moment Mc at which the
cracking failure is initiated. Mc calculated from this new equation is accurate and larger than Mc-approx calculated
from the existing approximate equation. We also derived a novel equation to calculate the minimum ch (cminh)
below which cracking failure will not occur. Besides, a novel equation to calculate the critical ch (ccrih) which
represents equal opportunities for cracking and bending failure of the beam to occur was further derived. The
model proposed in this article are valuable and practical in the design of curved laminated lumber.

To exert our model to practice, the equations derived in this paper are applied to literature data (Wood
handbook, 1999) and the results showed that hardwoods have statistically significantly larger average values of
three parameters, Mc, cminh and ccrih, than softwoods which means hardwoods are more resistant to cracking
failure than softwoods. This information is quite useful since lots of laminated lumber for building or furniture are
made of hardwoods in Asia.
1. Introduction

Laminated veneer lumber (LVL) is made by multi-layers of veneers in
the longitudinal direction and is as an alternative to solid timber or glue-
laminated timber. Due to a limitation of large-diameter trees from
plantation forests, the availability of large-dimension columns and beams
made by sawn timber from logs has decreased. Therefore the topic of
R&D and manufacturing of laminated lumber or laminated veneer
lumber (LVL) is getting more and more attention. Laminated lumbers are
often used as beams, columns, and arches in wood construction and the
curved laminated beam is commonly utilized in gymnasiums, churches,
museums, bridges and furniture parts. Recent studies about the devel-
opment of LVL are diverse, ranging from the source of veneer [1,2] to the
final application such as seismic design of buildings [3]. Bodig & Jayne
[4] offered adequate and detail information for the basic elasticity theory
andmechanical properties of laminated lumber composite systems which
is invaluable in the design of laminated lumber cost-effectively.
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curvature-decreasing moment are important, some references related to
the curved LVL are illustrated as follows and symbols are listed in
Table 1.

An approximate equation applied initial curvature to calculate the
transverse tensile stress of a curved laminated lumber under a curvature-
decreasing moment was widely cited in textbooks [6,7]. Wu & Furuno
[8] also applied the approximate equation to calculate the transverse
stresses in curved LVL under a bending moment. Their results showed
that the cracking failure occurred at the inner part of laminated lumber
made of Masson’s pine and fast-growing poplar under a
curvature-decreasing moment with initial ch of 0.3 where c and h are,
respectively, the curvature and the thickness of beam. The experimental
results showed that beams with larger curvature are more prone to
cracking and these are consistent with our equation (1.9). Ikuta [9,10]
investigated the transverse stress in curved laminated lumber composed
of Yezo spruce, Todo fir and oak. Strain gauges were applied to measure
the internal strain and stress distributions of the laminated wood, and the
results were compared with the stress calculating by the approximate
equation and are consistent with our equation (1.6). The results showed
that the bending strength of hardwood decreases more slowly than
softwood at larger curvatures. Nguyen [11] investigated the effects of
curvature on the stresses of a curved laminated beams subjected to
bending. The transverse stress was calculated by the approximate equa-
tion and was compared with FEMmethod. Similar results were obtained.
In these references, the approximate equation was applied to calculate
the transverse stress, however, the error caused by this approximate
equation was not mentioned. Actually, this error will be noticeable
especially the initial curvature of beam is small.

In this investigation, we derived an accurate cracking failure moment
Mc using the tensile strength perpendicular to the grain of wood and final
curvature which was expressed as the initial curvature minus the elastic
bending curvature change due to the bending moment at cracking. We
also derived the equation of the minimum ch, below which cracking
failure will not occur and the equation of the critical ch at which equal
opportunities for cracking failure and bending failure to occur. The
minimum ch and the critical ch can constrain the occurrence of cracking
failure. Many important data of physical and mechanical properties of
commercially important wood species grown in the United States were
Table 1
Nomenclature.

Notation

c Initial curvature of a beam
ch Dimensionless initial curvature of a beam
ccrih Critical ch value at Mc ¼ Mb

cminh The minimum ch for which cracking can occur. Cracking does not occur for
ch < cminh

c’ Change of curvature due to bending moment
c’h Dimensionless change of curvature due to bending moment
c’bh The c’h at which conventional bending failure occurs
c’ch The c’h at which cracking failure occurs
EL Young’s modulus in the longitudinal direction
I Moment of inertia of the cross section of a beam
K K2 ¼ ðch�c

0
chÞc

0
ch for Mc ¼ M

Q Q ¼ ðccrih�c0chÞ for Mc ¼ Mb

Mb Bending moment at which the bending failure occurs
Mc Bending moment at which the tangential cracking failure occurs
Mc-

approx

Approximate bending moment at which the tangential cracking failure
occurs

M Bending moment that creates a curvature change of c’
h Thickness of beam
L-failure Normal strain at which the conventional bending failure occurs. L-failure ¼

σb/EL
σb Bending strength in the longitudinal direction
σT Tangential tensile strength perpendicular to grain
ρ Initial radius of curvature
ρf Final radius of curvature

ρ
0 Radius of elastic bending curvature
y Distance from neutral axis
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reported in the Wood handbook [12]. To exert our model to practice, the
equations derived in this paper were applied to data from this text, sta-
tistical differences in the average minimum ch and the critical ch of 41
species of softwood and 48 species of hardwood were also compared.

2. Analyses

2.1. Transverse stress in beams under a pure bending moment

If an initially curved beam is bent to increase its curvature, inward
compressive forces are set up in the beam which produces transverse
compressive stresses having maximum at the mid-plane. In general,
compressive failure will not occur; therefore, this problem is not
described in this investigation. On the contrary, if a curved beam with
initial curvature c is bent to decrease its curvature (Fig. 1(a)), namely, to
straighten the beam, outward tensile forces per unit axial length dF set up
by a member of beam with width b of a cross-section and thickness dy set
a distance y from the neutral axis (Fig. 1(b)) can be expressed as

dF¼
�

1
ρþ y

� 1
ρ0 þ y

�
σLbdy (1.1)

where σL is the bending stress, which is proportional to its distance y from
neutral axis, ρ and ρ

0
are the radii of curvature of the initially curved

beam and the elastic bending, respectively, and c0 is the elastic bending
curvature change of the neutral axis of the beam (c

0¼1/ρ
0
and c ¼ 1/ρ),

which is proportional to the bending moment M and inversely propor-
tional to the flexural stiffness ELI and can be expressed as

c
0 ¼ M

ELI
(1.2)

where EL is the longitudinal elasticity and I is the moment of inertia of
rectangular cross-section expressed as

I ¼ bh3

12
(1.3)

After integration, we obtain

F¼
�

1
ρþ y

� 1
ρ0 þ y

�
M
I

Z h
2

y
bydy¼

�
1

ρþ y
� 1
ρ0 þ y

�
M
2I

b
�
h2

4
� y2

�

(1.4)

σR ¼
�

1
ρþ y

� 1
ρ0 þ y

�
M
2I

�
h2

4
� y2

�
(1.5)

σR�approx ¼
�

1
ρþ y

�
M
2I

�
h2

4
� y2

�
(1.6)

where F is the total outward force per unit axial length, and σR ¼ F/b is
the radial (transverse) stress at distance y from neutral axis.

Fmax ¼ðc� c
0 ÞM

I

Z h
2

0
bydy¼ðc� c

0 ÞMbh2

8I
(1.7)

σR�max ¼ðc� c
0 ÞMh2

8I
(1.8)

where Fmax is the maximum outward force per unit axial length at the
neutral axis. The maximum radial tensile stress (σR-max) can be expressed
as Fmax/b.

If Mc is defined as the cracking failure moment when the transverse
tensile stress reaches the tensile strength perpendicular to the grain of
air-dried wood, σT, and c’c is the elastic bending curvature change at
cracking failure, then Mc can be expressed as



Fig. 1. Originally curved beam under pure bending moment, M, to decrease the curvature. (a) Outward tensile forces dF of a curved beam (b) Internal stresses in a
curved beam.
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Mc ¼ 8σT I�
ch� c0 h

�
h
¼ 2σTbh2

3
�
ch� c0 h

� (1.9)

c c

Mc�approx ¼ 2σTbh2

3ch
(1.10)

where Mc-approx is the approximate equation for c »c’c.
2.2. Determination of critical c’ch for cracking failure

If we set M ¼ Mc, then

1 ¼ M
Mc

¼
�
ch� c

0
ch
�
c
0
chEL

8σT

if we set

(2.1)

�
ch� c

0
ch
�
c
0
ch¼K2 (2.2)

then

K¼
ffiffiffiffiffiffiffiffi
8σT
EL

r
(2.3)

where K is a parameter which simplifies the description of elastic
bending curvature. From equation (2.2), we obtain the solution of c’ch:

c
0
ch¼

ch�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðchÞ2 � 4K2

q
2

(2.4)

The positive sign in front of the square root in equation (2.4) is dis-
carded because a smaller value of the bending moment should be
adopted for crack initiation. Furthermore, to obtain the real root of the
square root, we must have

ch � 2K (2.5)

∵ch� c
0
ch¼

chþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðchÞ2 � 4K2

q
2

� K (2.6)

∴c
0
ch � K (2.7)

From equations (2.4) and (2).7) we obtain

cminh¼ 2K (2.8)

�
c
0
ch
�
max ¼K (2.9)
3

2.3. Determination of critical c’bh for bending failure

If a straight beam with a rectangular cross-section is subjected to a
pure bending moment M, fibers on the convex side are in tension, while
those on the concave side are in compression. Stress at the neutral axis is
zero, while the maximum compressive stress and maximum tensile stress
respectively occur at the outmost concave surface and convex surface.
Under a bending failure condition, the breaking momentMb is expressed
as

Mb ¼ 2σbI
h

(3.1)

where σb is the bending strength of the wood.
If we set M ¼ Mb then

1¼ M
Mb

¼ c
0
chEL

2σb
(3.2)

c
0
bh¼

2σb
EL

¼ 2εL�failure (3.3)

where c’bh is the critical c’h when bending failure occurs. εL-failure is the
longitudinal strain at the outermost surface of the beam under bending
failure. Because the failure mode is determined by the smaller bending
curvature, we obtain the following relations:

c’bh < c’ch for bending failure and
c’bh > c’ch for cracking failure.
If c’bh is smaller than c’ch, then bending failure occurs, and vice versa.

In the case of ch < 2K, if 2σb/EL� ch, then bending failure will occur;
whereas, if 0 < ch < 2σb/EL, bending failure will not occur in curvature-
decreased bending. However, if the bendingmoment is further increased,
bending failure will eventually occur.
2.4. Determination of critical ccrih of a beam with equal opportunities for
cracking and bending failure

Mc

Mb
¼ 4σT�

ch� c0ch
�
σb

(4.1)

If we set Mc ¼ Mb, then

�
ccrih� c

0
ch
�¼Q¼ 4σT

σb
(4.2)

where Q is the critical final ch.
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ch > ccrih for cracking failure and
ch < ccrih for bending failure.

0 2
Qcch¼K (4.3)

2

c
0
ch¼

K
Q

¼ 2σb

EL
¼ c

0
ch (4.4)

2

Fig. 2. Relationship between c’c h and ch (a) Mc/Mb and ch (b) and c’c h/ch and
ch (c). c’c h: calculated by equation (2.4). Mc/Mb: calculated by equation (4.1)
Red oak: EL ¼ 10300 MPa σT ¼ 3.5 MPa σb ¼ 75 MPa. Balsam fir: EL ¼ 10000
MPa σT ¼ 1.2 MPa σb ¼ 63 MPa.
ccrih¼Qþ K
Q

¼ 4σT

σb
þ 2σb

EL
(4.5)

3. Data utilization

In this study, we utilized data related to the mechanical properties of
air-dried wood grown in the United States, published in the Wood
handbook. σb, σT, EL, and the air-dried specific gravity were used for the
analyses, which included 41 species of softwoods and 48 species of
hardwoods. cminh and ccrih in relation to the air-dried specific gravity of
wood are discussed.

An analysis of variance (ANOVA) was used in this study. To compare
the results of σT/σb, cminh, and ccrih calculated by equations (4.2), (2.8)
and (4.5) using data from the Wood handbook, the confidence interval
(CI) of the difference between the means of hardwoods and softwoods
was used. If the p value of the F-test was <0.01, then there was a sta-
tistically significant difference between hardwoods and softwoods at the
1% level. Linear regressions of cminh and ccrih related to the air-dried
specific gravity were carried out for hardwoods and softwoods. Co-
efficients of correlation, R2, were also determined.

4. Results and discussion

From equation (1.10), one can see that the approximate magnitude of
Mc is proportional to σT, b, and the square of h, and is inversely propor-
tional to ch. But in the accurate equation (1.9), the critical curvature, c’c,
should be introduced. Namely, initial ch is replaced by the final value (ch
- c’ch). At the critical condition of crack initiationM ¼Mc, using equation
(2.1) ~ (2.3), c’ch is calculated with equation (2.4). From this equation,
we find that the minimum ch in real cases is 2K, and the corresponding
value of c’ch is K. We understand that there will be no cracking failure if
ch is smaller than 2K, even when the beam is subjected to a bending
curvature c’ larger than c. The final curvature (c - c’) will become
negative, and transverse stress changes from tension to compressive
stress. In other words, the smallest values of (ch - c’ch) in equation (2.6)
should be K. This completely differs from the approximate equation
(1.10) which has no limitations. Apparently equations (1.9) and (1.10)
cannot be used in the case of ch < 2K. In cases where bending failure
occurs, c’bh is expressed as 2σb/EL (equation (3.3)) and εL-failure is the
breaking strain under bending failure. If the critical condition of Mc¼ Mb
is considered, we obtain ccrih from equation (4.5) with equal opportu-
nities for cracking and bending failure. In this section, we discuss our case
studies of woods grown in the United States using the equations pre-
sented in sections x2 and x4. From equation (4.1), we realized that a
larger σT/σb ratio indicates a larger resistance of a beam against cracking
failure. Statistically, hardwoods have significantly larger ratios than
softwoods at the 1% level.

Taking red oak as an example for hardwood and balsam fir as an
example for softwood, the relationship between c’ch and ch is shown in
Fig. 2(a). The maximum c’ch ¼ K occurred when ch ¼ 2K, and it
decreased as ch increased. Since Mc is proportional to c’ch, therefore, Mc
decreased as ch increased. The relationship between Mc/Mb and ch is
shown in Fig. 2(b). The maximum Mc/Mb occurred when ch ¼ 2K, and it
decreased as ch increased. Mc/Mb reaches to 1 when ch reaches to 0.201
for red oak and 0.089 for balsam fir, respectively. These special points
mean ch ¼ ccrih, that is to say, equal opportunities for cracking and
4

bending failure of the beamwill occur. Furthermore, cracking failure will
happen if its ch > ccrih and bending failure will happen once its ch < ccrih.
There are differences between Mc-approx calculated according to equation
(1.10) and Mc according to equation (1.9) which may cause error. From
equations (1.9) and (1.10),Mc-approx/Mc ¼ 1- c’ch/ch ¼ 0.5–1 is obtained.
For ch ¼ 2K, the estimating error of equation (1.10) will be 50% and
becomes negligible with sufficient large ch>> 2K. How important would
the error be when it comes to reality? What is the threshold of ch below
which equation (1.10) should not be used? Suppose an error of 10% was
acceptable for the curvature-decreasing case, the error can be expressed
as c’ch/ch. From Fig. 2(c) we find the specific ch is 0.173 and 0.103 for
oak and fir, respectively. For oak, the error at ccrih (0.201) is 7.1%< 10%,
therefore the approximate equation (1.10) is suitable. On the other hand,



Fig. 4. Relationship between ccrih and the specific gravity of air-dried woods.
ccrih is calculated by equation (4.5).
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for fir, the error at ccrih (0.089) is 14.2% > 10%, the accurate equation
(1.9) should be used.

From Fig. 3, one can see that hardwoods have significantly statisti-
cally larger cminh values than softwoods at the 1% level. Hardwoods have
an average cminh value of 0.117, with a range of 0.084–0.146, while
softwoods have an average value of 0.086, with a range of 0.062–0.102.
The value of cminh indicates the minimum ch below which cracking
failure will not occur.

Similarly, from Fig. 4, we can find that hardwoods have significantly
larger values of ccrih than softwoods at the 1% level. Hardwoods have an
average ccrih values of 0.235, with a range of 0.139–0.317, while soft-
woods have an average value of 0.146, with a range of 0.089–0.193. The
value of ccrih indicates the critical ch below which Mc will be larger than
Mb, and above which Mc will be smaller than Mb. If Mb > Mc, then
cracking failure occurs; otherwise, bending failure is the dominant mode.
The analysis shows that the approximate equation (1.10) is suitable only
for ch > ccrih.

The combination of glulam can be divided into 2 categories: homo-
geneous glulam which is made of timber of the same quality and inho-
mogeneous glulam which is made of timber of different quality. Bending
stress at a certain point in a homogenous beam is proportional to the
distance between this point and the neutral axis. Bodig & Jayne [4]
explained inhomogeneous glulam is a good idea for glulam
manufacturing for the costs and effectiveness considerations. It is quite
common for a straight glulam that lumber of high elasticity placed at the
upper and lower side, and lumber of low elasticity placed in the middle of
the beam. High stiffness of inhomogeneous glulam beam can be manu-
factured assisted by the non-destructive inspection. In Japan, intensive
researches and developments of inhomogeneous glulam was composed
of two species, such as Japanese cedar with low strength properties
placed in the inner layers, and Douglas fir with high strength placed at
the outer layers. Other combination such as cedar and oak, i.e., mixing
softwood and hardwood laminae in the same gluman is extended [1].

While in the case of inhomogeneous curved laminated lumber, values
of Mc, σT/σb, cminh and ccrih is lower than those of homogeneous, which
mean cracking failure is more prone to occur when inhomogeneous
curved laminated lumber subjected to a curvature-decreasing bending
moment. The lower transverse tensile strength σT will cause the
decreasing of Mc, cminh and ccrih and cracking failure easier to occur.
Hardwoods are more resistant to cracking failure because of a larger σT
than softwoods. On the other hand, the occurrence of cracking failure
will reduce the maximum bending load, and it will reduce the measured
bending strength σb. Results from Ikuta’s bending test [9,10] on curved
laminates showed that hardwoods are less prone to cracking failures.
Therefore, decrease in bending strength is more moderate than soft-
woods when the curvature is larger. This issue should be considered in
the glulam combination design: the inner part should avoid using low
grade lumber to ensure the structural safety for the curved laminated
Fig. 3. Relationship between cminh and the specific gravity of air-dried woods.
cminh ¼ 2K.
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lumber especially when ch is greater than ccrih.
Data from Wood engineering dictionary [13] showed some valuable

data in the design of curved laminated lumber such as tensile strength
perpendicular to grain is on average one-tenth to one-twentieth of the
tensile strength along the grain, and tensile strength in radial direction is
about 1.7 times larger than tensile strength in tangential direction due to
the existence of wood ray tissue in the radial direction. These data agree
with our ideas.

Kollmann & Cote [14] detailed in their text the influence of specific
gravity, moisture content, and fiber orientation on the physical proper-
ties, elastic modulus, and mechanical properties of wood. Besides, the
mechanical properties of wood are also influenced by the presence of
knots and the slope of grain produced by sawing method. Abnormal
woods like reaction wood and juvenile wood also reduce strength
properties of wood. Among these factors, specific gravity has the greatest
influence on the properties of wood. The elastic modulus and the strength
properties of wood increase with the increase of specific gravity, there-
fore specific gravity is an important index for evaluating the properties of
wood. For the species analyzed here using data fromWood handbook, the
air-dried specific gravity of hardwoods ranges approximately from 0.34
to 0.72, whereas that of softwoods ranges approximately from 0.31 to
0.59. Hardwoods usually have larger specific gravity than softwoods.
However, in the case of relationships between the strength ratio and
specific gravity, the tendency becomes unclear for the low R2 presented.
As to the effects of specific gravity on cminh and ccrih, we carried out a
linear regression analysis. As shown in Figs. 3 and 4, hardwoods present a
positive tendency with regression coefficients, R2, of 0.204 and 0.075, for
cminh and ccrih, respectively, whereas softwoods present a weak negative
tendency with 0.002 and 0.035 for cminh and ccrih, respectively. In
hardwoods, white oak has the largest values for σb/EL, cminh, and ccrih,
whereas aspen has the smallest values for σb/EL and ccrih, and basswood
has the smallest value for cminh. In softwoods, California red fir has the
largest values for σb/EL and ccrih, and eastern red cedar has the largest
value for cminh, whereas black spruce has the smallest values. Based on
data from the Wood handbook, we found the value of ccri h to be about
2-times larger than cminh. Nevertheless, gluing hardwood can be more
challenging (in particular oak is quite challenging). If wood with high
tensile strength perpendicular to grain such as oak is used for a curved
laminated-lumber, cracking failure may occur at the bad glue-line. In this
condition, glue-ability will become a critical problem.

To visualize the cminh and ccrih of curved beams, the graphic repre-
sentations for the average cminh and ccrih of hardwoods and softwoods
were shown as Fig. 5(a) and (b).

The mechanism of cracking failure of curved laminated lumber under
curvature-decreasing moment was clarified in this research. In the design
of glulam inhomogeneous curved laminated lumber, to ensure the
structural safety, low grade lumber in the inner part should be avoided
especially when ch is larger than ccrih. Once the grain direction of laminae



Fig. 5. Graphical representations of average values of cminh ( ) and ccrih ( ). (a) Hardwoods (cminh: 0.117, ccrih: 0.235) (b) Softwoods (cminh: 0.086, ccrih: 0.146).
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is not parallel to the length of beam, then the bending strength of beam
will be largely decreased according to Hankison’s formula [4] and the
risk of bending failure of the beam will be raised.

5. Conclusions

When a curved laminated wood beam is bent to decrease its curva-
ture, transverse tensile stress will be set up with a maximum value at the
mid-plane. If the tensile stress exceeds the tensile strength perpendicular
to the grain of wood, cracking failure will occur, followed by splitting
along the longitudinal axis. In this analysis, we derived equations to
calculate the cracking moment Mc, and cminh below which cracking fail-
ure will not happen. More importantly, we introduced an equation for
ccrih with equal opportunities for cracking and bending failure. If ch >

ccrih, then cracking failure is the dominant failure mode. On the other
hand if ch < ccrih, then bending failure is the dominant mode. The
equations ofMc, cminh and ccrih are novel, which are valuable in the design
of curved laminated lumber. In real cases, ccrih is about 2-times larger
than cminh. The approximate equation for calculating the bending
moment of cracking failure is suitable only for ch > ccrih. Statistically
hardwoods have larger mean values of cminh and ccrih than softwoods.
This means that hardwoods are more resistant to cracking failure than
softwoods.
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