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Abstract: This work develops a trust inference model to address scenarios where agents in a
swarm collaborate to achieve the coverage control task. To gather empirical data from human
subjects for the probabilistic model development, we build various simulation tools and user
interfaces. Using our visual training tool, we train a single-agent model and then extend that to
create our multi-agent model. These models utilize a dynamic Bayesian network and produce
stochastic predictions. We then apply these models to our Voronoi-based area coverage problem
in real time, where agents adjust their behavior to maximize the team performance and hence
human trust. As a result of this research, multi-agent teams will be able to increase their
individual trust levels thereby enhancing team performance and efficiency.
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1. INTRODUCTION

With recent advances in the field of artificial intelligence
(AI) in combination with autonomous systems, we are
witnessing an increasing number of their applications in
various industries, such as manufacturing, healthcare, and
transportation. These technologies have the potential to
improve efficiency, reduce costs, and enhance safety in
many different contexts. However, as these systems become
more sophisticated and independent, it is important to ad-
dress the issue of trust and how it affects the way humans
interact with them. For example, the automotive indus-
try has implemented various systems, including advanced
cruise control that can maintain lane and proximity to
other vehicles. Some car manufacturers have even released
beta versions of full self-driving capabilities. As these au-
tonomous systems are increasingly applied to technologies
that have the power to directly impact human life, the
question of when to trust them becomes more critical.

Lee and See (2004) propose a definition of trust in the
context of human-robot trust/interaction as:

The attitude that an agent will help achieve an
individual’s goals in a situation characterized
by uncertainty and vulnerability.

However, it should be noted that the definition varies
heavily depending on the context in which it is inferred
(Khavas et al., 2020).

This paper presents a trust model for a team of agents
that can reduce the need for an operator to monitor
multiple robots, enabling them to oversee the entire team.
The model determines the level of autonomy assigned
to individual agents and identifies when intervention is
necessary. We achieve this by extending a single-agent
stochastic trust model to the multi-agent scenario. Our
models are trained using empirical data from human

subjects, and we develop a multi-agent coverage control
simulation platform to test their effectiveness in real time.
Agents utilize individual models of trust to adjust their
behavior and maximize the model prediction for team
trust.

2. RELATED WORK

Trust in literature varies from psychological studies to
methods of modeling human/robot trust to applications of
developed models. Hancock et al. (2011) look at the trust
from the psychological standpoint performing a meta-
analysis of factors in the development of human-robot
trust while Freedy et al. (2007) look at attributes most crit-
ical when deciding upon a level of trust. To properly cal-
ibrate human trust, Hussein et al. (2020) looks at setting
initial trust levels based on reliability and transparency.

There is a vast literature focused on the single-agent and
human interactions. Xu and Dudek (2015) present an
asymmetric human-robot model of trust termed OPTIMo
that assumes the human operator plays the role of a
supervisor and the agent is a worker. They base their
model off of a dynamic Bayesian network (DBN) structure
and use casual reasoning and evidential factors to produce
performance-centric belief distributions for inferring hu-
man trust. Our work uses a very similar single-agent model
to that of OPTIMo. A bi-directional model is presented
by Azevedo-Sa et al. (2021) which notes the differences
between human trust and robotic trust, distinguishing it
from many single-agent models. One question that needs
to be answered in this model is how a robot can deter-
mine when to trust the human. The researchers collected
data from 284 participants and demonstrated the model’s
potential applications in control authority allocation.

More recently, Fooladi Mahani et al. (2021) extended
OPTIMo to the multi-agent scenario. In this work, a team
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of robots are overseen by an operator. Robots are non-
collaborative and each have assigned set areas in a search
and rescue mission setting. They tune a linear model
for performance using least squares and feed that into
their model for trust. General distributions are modeled
by a categorical Boltzmann machine (CBM) which uses
a recurrent neural network. They then use expectation
maximization for model parameter training. They assume
at most only one agent may be in manual mode for the
operator to intervene or manually control, while the rest
must remain autonomous. This model, while trained for
the multi-agent scenario, defines an individual measure of
trust relative to other agents and uses evidential factors
from the operator. Our work differs in that we look
to define an overall model of trust for the team
using weighted team performance and a weighted
trust metric. Individual agents then have the goal
of changing their behavior to maximize team trust .
We create simulations that apply these models in real-time
and provide results that support our models.

Other works involving trust in human-swarms include
inverse reinforcement learning (Nam et al., 2017), trans-
parency modeling (Hepworth et al., 2020), and another bi-
directional model (termed mutual trust or bilateral) using
a qualitative time series model for trust (Wang and Wang,
2017).

3. BACKGROUND

Our model of trust can quantify reliability of the team
as a whole, which is a function of agents’ performance and
inferred individual trust. In the collaborative task sharing,
the ultimate goal is to handle the main task while ensuring
each agent is taking a right share of the overall task
based on their dynamics or their associated performance-
oriented measures. Hence, the developed model for team
trust should take the mutual trust levels of the agents
into account. In essence, in addition to the evaluation of
each agent by the human supervisor, our model should
also be aware of relative trust measures within the team.
Our proposed approach incorporates two models. Firstly,
we develop a linear Gaussian model similar to that found
in OPTIMo for individual agents. Then, we use several
metrics, a weighted team performance and mutual trust
metric as inputs to our team model for trust.

The single-agent model of trust is a performance-centric
model meaning the inferred human trust state is highly
dependent upon the current performance of the agent. The
performance is scored on a normalized scale and directly
correlates to task performance, which the operator can
visually see during the data collection/simulations. This
effectively means high task performance will lead to a
higher trust score, and poor performance leads to a low
trust score. Then, we incorporate intervention which can
be thought of as an evidential factor showing a lapse in
the current trust as the agent fails to effectively complete
the intended task. Now the question is how one can revise
the trust inference model when dealing with a swarm of
agents collaborating on given task(s).

The end goal of this research is to extend the OPTIMo
concept from an individual agent to swarm of agents.
This capability will allow collaboration between the agents
in order to complete coordinated autonomous operations.

The agent swarm will be trust-seeking 1 adaptive robots:
these robots will be able to sense when the human has low
trust and adapt their behaviors in response to improve
task performance and seek greater team trust. The human
operator will therefore only need to analyze the team’s
overall performance as the individual agents will self-
adjust their behaviors in attempt to reach optimal team
trust. In this work, we first evaluate an agent’s individual
inferred trust state in order to quantify the human’s
trust state during interactions. We then introduce our
approaches for modeling team trust, which use weighted
performance metrics and mutual trust. The individual
model dictates how an agent must adapt its behavior to
improve the team’s overall performance and trust metric.

The main contribution of this work is the develop-
ment of a trust model that can accurately infer the
trust relationship between a human operator and a
swarm of autonomous agents in real time . It also
allows individual agents to coordinate their behaviors in
order to increase their individual trust states and improve
the team’s performance and efficiency. This model can be
trained through direct interactions between the human
operator and the team allowing the agents to capture the
operators trust tendencies. By quantifying the operator’s
degree of trust, one can add a new degree of autonomy to
coordinated multi-agent operations.

3.1 Single-Agent Trust Model

The original OPTIMo paper presents an asymmetric
human-robot performance-centric model for trust. This
model was chosen as a starting point for our work in
that it is a time-series model able to dynamically infer the
human trust state in near real-time and give probabilistic
trust estimates. Our model uses an agent’s individual task
performance, human intervention, and trust feedback as
the main factors to infer the trust state. The OPTIMo
model considers a few more factors such as trust change
and extraneous causes, which are unnecessary in our prob-
lem setup. Since the trust state is a “non-observable” state
in the system, it is a hidden variable in the graph. The
human operator perceives the performance of the robot
agent and gives trust feedback and intervention. After
human intervention, the agent adjusts its behavior based
on the input from human.

Figure 1 illustrates our DBN structure. We look at a
continuous sequence of interactions k ∈ K. Performance is
recorded for all k, while intervention and trust feedback oc-
cur at a set interval, or x steps. Data for intervention/trust
feedback may also be recorded if the user chooses to pause
at any point and provide data. All data is normalized
∈ [0, 1], with the exception of intervention which is a
binary variable ∈ {0, 1}.
Like OPTIMo, we use conditional probability distributions
(CPDs) to model the relationship between each factor.
Human trust is modeled after a Gaussian distribution
expressed in terms of prior trust, tk−1, and current/prior
performance, pk, pk−1:

1 Trust-seeking can actually be problematic since the trust feedback
provider may not be able to provide the optimal feedback and best
intervention. It works fine under the assumption that the trust
feedback provider is an expert in giving feedback.
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maximization for model parameter training. They assume
at most only one agent may be in manual mode for the
operator to intervene or manually control, while the rest
must remain autonomous. This model, while trained for
the multi-agent scenario, defines an individual measure of
trust relative to other agents and uses evidential factors
from the operator. Our work differs in that we look
to define an overall model of trust for the team
using weighted team performance and a weighted
trust metric. Individual agents then have the goal
of changing their behavior to maximize team trust .
We create simulations that apply these models in real-time
and provide results that support our models.

Other works involving trust in human-swarms include
inverse reinforcement learning (Nam et al., 2017), trans-
parency modeling (Hepworth et al., 2020), and another bi-
directional model (termed mutual trust or bilateral) using
a qualitative time series model for trust (Wang and Wang,
2017).

3. BACKGROUND

Our model of trust can quantify reliability of the team
as a whole, which is a function of agents’ performance and
inferred individual trust. In the collaborative task sharing,
the ultimate goal is to handle the main task while ensuring
each agent is taking a right share of the overall task
based on their dynamics or their associated performance-
oriented measures. Hence, the developed model for team
trust should take the mutual trust levels of the agents
into account. In essence, in addition to the evaluation of
each agent by the human supervisor, our model should
also be aware of relative trust measures within the team.
Our proposed approach incorporates two models. Firstly,
we develop a linear Gaussian model similar to that found
in OPTIMo for individual agents. Then, we use several
metrics, a weighted team performance and mutual trust
metric as inputs to our team model for trust.

The single-agent model of trust is a performance-centric
model meaning the inferred human trust state is highly
dependent upon the current performance of the agent. The
performance is scored on a normalized scale and directly
correlates to task performance, which the operator can
visually see during the data collection/simulations. This
effectively means high task performance will lead to a
higher trust score, and poor performance leads to a low
trust score. Then, we incorporate intervention which can
be thought of as an evidential factor showing a lapse in
the current trust as the agent fails to effectively complete
the intended task. Now the question is how one can revise
the trust inference model when dealing with a swarm of
agents collaborating on given task(s).

The end goal of this research is to extend the OPTIMo
concept from an individual agent to swarm of agents.
This capability will allow collaboration between the agents
in order to complete coordinated autonomous operations.

The agent swarm will be trust-seeking 1 adaptive robots:
these robots will be able to sense when the human has low
trust and adapt their behaviors in response to improve
task performance and seek greater team trust. The human
operator will therefore only need to analyze the team’s
overall performance as the individual agents will self-
adjust their behaviors in attempt to reach optimal team
trust. In this work, we first evaluate an agent’s individual
inferred trust state in order to quantify the human’s
trust state during interactions. We then introduce our
approaches for modeling team trust, which use weighted
performance metrics and mutual trust. The individual
model dictates how an agent must adapt its behavior to
improve the team’s overall performance and trust metric.

The main contribution of this work is the develop-
ment of a trust model that can accurately infer the
trust relationship between a human operator and a
swarm of autonomous agents in real time . It also
allows individual agents to coordinate their behaviors in
order to increase their individual trust states and improve
the team’s performance and efficiency. This model can be
trained through direct interactions between the human
operator and the team allowing the agents to capture the
operators trust tendencies. By quantifying the operator’s
degree of trust, one can add a new degree of autonomy to
coordinated multi-agent operations.

3.1 Single-Agent Trust Model

The original OPTIMo paper presents an asymmetric
human-robot performance-centric model for trust. This
model was chosen as a starting point for our work in
that it is a time-series model able to dynamically infer the
human trust state in near real-time and give probabilistic
trust estimates. Our model uses an agent’s individual task
performance, human intervention, and trust feedback as
the main factors to infer the trust state. The OPTIMo
model considers a few more factors such as trust change
and extraneous causes, which are unnecessary in our prob-
lem setup. Since the trust state is a “non-observable” state
in the system, it is a hidden variable in the graph. The
human operator perceives the performance of the robot
agent and gives trust feedback and intervention. After
human intervention, the agent adjusts its behavior based
on the input from human.

Figure 1 illustrates our DBN structure. We look at a
continuous sequence of interactions k ∈ K. Performance is
recorded for all k, while intervention and trust feedback oc-
cur at a set interval, or x steps. Data for intervention/trust
feedback may also be recorded if the user chooses to pause
at any point and provide data. All data is normalized
∈ [0, 1], with the exception of intervention which is a
binary variable ∈ {0, 1}.
Like OPTIMo, we use conditional probability distributions
(CPDs) to model the relationship between each factor.
Human trust is modeled after a Gaussian distribution
expressed in terms of prior trust, tk−1, and current/prior
performance, pk, pk−1:

1 Trust-seeking can actually be problematic since the trust feedback
provider may not be able to provide the optimal feedback and best
intervention. It works fine under the assumption that the trust
feedback provider is an expert in giving feedback.

Fig. 1. Dynamic Bayesian network model for a single-agent
showing how factors such as performance (pk) affects
the human’s latent trust state (tk). Intervention ik
and trust feedback fk provide evidence to support a
change in trust.

Prob(tk|tk−1, pk, pk−1)

= N (tk; tk−1 + ωtb + ωtppk + ωtd(pk − pk−1), σt), (1)

where N (x;µ, σ) is a Gaussian distribution for the random
variable x, mean µ, and standard deviation σ. Parame-
ters wtb, wtp, and wtd are learned during training from
collected data and correspond to bias, performance, and
performance difference weightings.

Intervention is modeled in terms of current/prior trust,
tk, tk−1, and uses a sigmoid distribution S(x) since ik is a
binary variable.

Prob(ik = 1|tk, tk − 1)

= S(ωib + ωittk + ωid(tk − tk−1)). (2)

Again, parameters ωib, ωittk, and ωid are learned during
training and correspond to bias, intervention, and differ-
ence weightings. It is understood that Prob(ik = 0|...) =
1− Prob(ik = 1|...).
A Gaussian CPD can be used to model the relationship
of trust feedback (given by the human) to the latent trust
state as

Prob(fk|tk) = N (fk; tk, σf ). (3)

The single-agent model is trained using the data collected
from human subjects. To perform training, hard assign-
ment expectation maximization is utilized. Full process
details will be discussed in a future section.

4. DEVELOPMENT OF MULTI-AGENT TRUST
MODEL

We propose two structures for expanding the single-agent
trust model to the multi-agent scenario:

4.1 One-layer DBN Structure

The first model structure we propose is shown in Figure 2.
It is assumed that the performance data pik is available at
all time steps, intervention data iik is available at some time
steps, and team trust feedback Fk is available at some time
steps. We denote each agent as i, where i = 1, 2, ..., N (N is
the total number of agents). Using this network structure,
we will assume we only have recorded data for Fk, or trust
feedback at the team level, and f i

k, or trust feedback at
the agent level, remains unknown.

We compose the relation between f i
k and Fk as the

following two equations:

Fig. 2. A one-layer DBN network: In this structure, tik,
pik, i

i
k, and f i

k represent the i-th agent’s trust, per-
formance, human intervention, and decomposed trust
feedback at time step k, respectively; Fk is the human
trust feedback at the team level.

f i
k =

2

π
arctan




pik
1

N

N
i=1

pik

tan(
π

2
Fk)


 , (4)

Fk =
2

π
arctan


1

N

N
i=1

tan(
π

2
f i
k)


. (5)

Fk can generate f i
k using (4). We take the individual

performance at time step k and divide it by the average
performance of the agents. This creates a ratio comparing
the individual to the team. We then weight it with Fk

by mapping it to the tangent function. This is scaled
back to values between zero and one by applying the
inverse tangent.The single-agent model is then trained on
data pik, i

i
k, and the generated f i

k. We can then use the
trained model to infer f i

k on new data, or during real-
time simulations. This inferred data can then be used to
generate Fk using (5) to obtain a team trust metric.

4.2 Two-layer DBN Structure

Another approach is a two-layer DBN structure. The
graphical model is shown in Figure 3. We decompose this

Fig. 3. A two-layer DBN network: In this structure, tik,
pik, i

i
k, and f i

k represent the i-th agent’s trust, per-
formance, human intervention, and trust feedback at
time step k, respectively; Tk and Fk are the trust and
human trust feedback at the team level, respectively.

network into two levels: the team level and the agent level.
The two levels are relatively independent. The team level
includes factors such as team performance Pk, team trust
Tk, team trust feedback Fk, and mutual trust Mk. We
assume the distributions linking these factors are normal
and are as follows

Prob(Tk|Tk−1, Pk, Pk−1,Mk) = N (Tk;µT , σT ) (6)
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Prob(Fk|Tk) = N (Fk;Tk, σF ), (7)
where

µT = Tk−1 + ωTbT + ωTpPk + ωTd(Pk − Pk−1) + ωTmMk,
(8)

Pk =

N∑
i=1

Ai
k

A
pik, Mk =

N∑
i=1

Ai
k

A
tik. (9)

We train at the single-agent level using pik, i
i
k, and f i

k to
acquire tik and all the relevant parameters. Then, at the
team level, we first generate Pk and Mk and use Fk to
train for Tk and acquire all relevant parameters. As this
model focuses on learning additional parameters rather
than function mapping, we decided to adopt this approach
going forward.

4.3 Training Approach

We apply hard-assignment expectation maximization to
acquire the optimized parameters. This is a well known
approach for performing maximum likelihood estimation
in the presence of latent variables (trust). First, initial
parameters Θ0 are chosen, and the expectation is then
computed to find missing values. Next, the maximization
step finds optimized parameters. This process then repeats
until objective function convergences or a certain threshold
is reached. The interested reader is referred to (Koller and
Friedman, 2009) for more details on the process.

For the expectation calculation, we use a filtered then
smoothed belief to maintain stochastic properties. We
then use the resulting distribution to find a determin-
istic/discrete values for expectation. These deterministic
values are then used for the maximization step. The ex-
pectation steps are derived from the OPTIMo model of
trust and are as follows:

We first calculate the filtered trust belief belf (Tk) as

belf (Tk) =

∫
bel(Tk, Tk−1)dTk−1∫∫

bel(Tk, Tk−1)dTk−1dTk

. (10)

This is calculated forward in time assuming a uniform
initial trust belief belf (T0) = Prob(T0) = 1. Initialized pa-
rameters Θ0 are chosen and used for the first iteration. We
use the joint distribution of Tk and Tk−1 or bel(Tk, Tk−1)
within belf (Tk) as

bel(Tk, Tk−1) = Prob(Fk)Prob(Tk)belf (Tk−1). (11)

We can marginalize the distributions to perform the cal-
culations of the numerator and denominator as∫

bel(Tk, Tk−1)dTk−1 →
∑
Tk−1

bel(Tk, Tk−1), (12)

∫∫
bel(Tk, Tk−1)dTk−1dTk →

∑
Tk

∑
Tk−1

bel(Tk, Tk−1).

(13)
We discretize the space of Tk−1×Tk to equally spaced bins,
e.g., 10× 10. This allows us to calculate bel(Tk, Tk−1) and
then perform the summations.

We now calculate the smoothed trust belief bels(Tk) using
(14) for all data backward in time given that bels(Tfinal) =
belf (Tfinal).

bels(Tk−1) =

∫
bel(Tk, Tk−1)∫

bel(Tk, Tk−1)dTk−1

bels(Tk)dTk (14)

We use marginal distributions to calculate the numera-
tor/denominator in a similar fashion to the filtered belief
step. Lastly, we take the expectation for each smoothed
trust belief distribution to obtain a single sequence of trust
states. These values are then used for the maximization
step.

For the maximization step, we employ our log likelihood
function, which takes into account the collected data
and values from the expectation steps. We utilize an
optimization function from the SciPy optimization library,
specifically employing the Nelder Mead algorithm, that
allows incorporating constraints and bounds within its
parameters. Our objective becomes finding the parameters
that optimize joint probability across all time steps, or

Θ∗ = argmax
Θ

K∏
k=1

P(Fk|Tk)P(Tk|Tk−1, Pk−1, Pk,Mk),

(15)
where Θ = (ωTb, ωTp, ...). Our objective function can
then be converted into a log likelihood function so that a
summing operation can be applied to simplify iterations:

argmax
Θ

[
K∑

k=1

lnP (fk|tk) +
K∑

k=1

lnP (tk|pk−1, pk, tk−1)

]
.

(16)

5. DATA COLLECTION FOR THE MULTI-AGENT
TRUST MODEL LEARNING

In order to perform analysis and training of our model,
human subject testing data had to be collected. To do
this, a user interface was built in Python. This simulation
looked at a multi-agent coverage problem with N agents
and utilized Voronoi partitioning in an environment con-
taining obstacles. An illustrative example is visualized in
Figure 4.

Fig. 4. A coverage simulation utilizing Voronoi partitioning
and five agents.

The agents goals, i.e., their current task headings, are
denoted by the plus sign “+” and they use an iterative
approach to move towards them. Upon initialization of the
simulation, each agent is assigned a random error based
on a seed. The heading is calculated, or a normalized
vector from the agent’s position to its goal, and the error
is added to this vector. This error can be thought of as
a different constant wind applied to each agent. Each
agent’s speed is then multiplied by its heading (which
includes the error component) to move one step forward
in time. After a predetermined amount of time passes,
the human subject is presented with an intervention GUI.
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Prob(Fk|Tk) = N (Fk;Tk, σF ), (7)
where

µT = Tk−1 + ωTbT + ωTpPk + ωTd(Pk − Pk−1) + ωTmMk,
(8)

Pk =

N∑
i=1

Ai
k

A
pik, Mk =

N∑
i=1

Ai
k

A
tik. (9)

We train at the single-agent level using pik, i
i
k, and f i

k to
acquire tik and all the relevant parameters. Then, at the
team level, we first generate Pk and Mk and use Fk to
train for Tk and acquire all relevant parameters. As this
model focuses on learning additional parameters rather
than function mapping, we decided to adopt this approach
going forward.

4.3 Training Approach

We apply hard-assignment expectation maximization to
acquire the optimized parameters. This is a well known
approach for performing maximum likelihood estimation
in the presence of latent variables (trust). First, initial
parameters Θ0 are chosen, and the expectation is then
computed to find missing values. Next, the maximization
step finds optimized parameters. This process then repeats
until objective function convergences or a certain threshold
is reached. The interested reader is referred to (Koller and
Friedman, 2009) for more details on the process.

For the expectation calculation, we use a filtered then
smoothed belief to maintain stochastic properties. We
then use the resulting distribution to find a determin-
istic/discrete values for expectation. These deterministic
values are then used for the maximization step. The ex-
pectation steps are derived from the OPTIMo model of
trust and are as follows:

We first calculate the filtered trust belief belf (Tk) as

belf (Tk) =

∫
bel(Tk, Tk−1)dTk−1∫∫

bel(Tk, Tk−1)dTk−1dTk

. (10)

This is calculated forward in time assuming a uniform
initial trust belief belf (T0) = Prob(T0) = 1. Initialized pa-
rameters Θ0 are chosen and used for the first iteration. We
use the joint distribution of Tk and Tk−1 or bel(Tk, Tk−1)
within belf (Tk) as

bel(Tk, Tk−1) = Prob(Fk)Prob(Tk)belf (Tk−1). (11)

We can marginalize the distributions to perform the cal-
culations of the numerator and denominator as∫

bel(Tk, Tk−1)dTk−1 →
∑
Tk−1

bel(Tk, Tk−1), (12)

∫∫
bel(Tk, Tk−1)dTk−1dTk →

∑
Tk

∑
Tk−1

bel(Tk, Tk−1).

(13)
We discretize the space of Tk−1×Tk to equally spaced bins,
e.g., 10× 10. This allows us to calculate bel(Tk, Tk−1) and
then perform the summations.

We now calculate the smoothed trust belief bels(Tk) using
(14) for all data backward in time given that bels(Tfinal) =
belf (Tfinal).

bels(Tk−1) =

∫
bel(Tk, Tk−1)∫

bel(Tk, Tk−1)dTk−1

bels(Tk)dTk (14)

We use marginal distributions to calculate the numera-
tor/denominator in a similar fashion to the filtered belief
step. Lastly, we take the expectation for each smoothed
trust belief distribution to obtain a single sequence of trust
states. These values are then used for the maximization
step.

For the maximization step, we employ our log likelihood
function, which takes into account the collected data
and values from the expectation steps. We utilize an
optimization function from the SciPy optimization library,
specifically employing the Nelder Mead algorithm, that
allows incorporating constraints and bounds within its
parameters. Our objective becomes finding the parameters
that optimize joint probability across all time steps, or

Θ∗ = argmax
Θ

K∏
k=1

P(Fk|Tk)P(Tk|Tk−1, Pk−1, Pk,Mk),

(15)
where Θ = (ωTb, ωTp, ...). Our objective function can
then be converted into a log likelihood function so that a
summing operation can be applied to simplify iterations:

argmax
Θ

[
K∑

k=1

lnP (fk|tk) +
K∑

k=1

lnP (tk|pk−1, pk, tk−1)

]
.

(16)

5. DATA COLLECTION FOR THE MULTI-AGENT
TRUST MODEL LEARNING

In order to perform analysis and training of our model,
human subject testing data had to be collected. To do
this, a user interface was built in Python. This simulation
looked at a multi-agent coverage problem with N agents
and utilized Voronoi partitioning in an environment con-
taining obstacles. An illustrative example is visualized in
Figure 4.

Fig. 4. A coverage simulation utilizing Voronoi partitioning
and five agents.

The agents goals, i.e., their current task headings, are
denoted by the plus sign “+” and they use an iterative
approach to move towards them. Upon initialization of the
simulation, each agent is assigned a random error based
on a seed. The heading is calculated, or a normalized
vector from the agent’s position to its goal, and the error
is added to this vector. This error can be thought of as
a different constant wind applied to each agent. Each
agent’s speed is then multiplied by its heading (which
includes the error component) to move one step forward
in time. After a predetermined amount of time passes,
the human subject is presented with an intervention GUI.

Alternatively, the subject can pause the simulation at
any time and intervene/provide feedback. The intervention
GUI queries the subject about the trust level of each
individual agent. In addition, the distance-to-goal error
and the heading error are displayed to aid the user in
their decision, and the subject can decide if they would
like to intervene by pressing the corresponding “correct
course” button. This makes adjustments to the heading
error. Finally, the subject is asked to provide feedback for
the overall team trust. A snapshot of the developed GUI
is shown in Figure 5.

Fig. 5. The intervention window where the subject can
offer feedback. A single agent is shown, but the user is
queried for all remaining agents. The agent’s heading
error, or the actual direction the agent will move after
the error is applied, can be seen by the white dashed
line.

Data was collected from a sample size of 10 people. Each
participant was asked to run through two simulation ses-
sions. This generated a total of approximately 8,000 data
points to train upon. All relevant data was saved to a CSV
file for further processing such as trust feedback, interven-
tion (course correction), distance error, coordinates, and
coverage area size 2 .

6. TRAINING TOOL FOR THE MULTI-AGENT
TRUST MODEL

6.1 preprocessing

The collected data from the human subject study is loaded
into our training visualization tool, a GUI created in
Python. The distance error is converted to a normalized
metric of performance.

After loading the dataset, initial weights can be set and
visualized, and training can then commence. There are
many useful features in the training GUI to allow for
a flexible on-the-fly training setup. For example, certain
training weights can be set as static to allow only a certain
set of parameters to be trained for. This is helpful in
guiding the parameters to convergence. The training tool
can be seen in Figure 6.

6.2 Training Results

The results of the single-agent training can be seen in
Figure 6. For both our single-agent model and multi-agent
model, training results show the highest emphasis on the

2 More information on this simulation and other codes for this paper
can be found at https://Github.com/OliverZanone.

difference weighting. Weights show a convergence around
60 iterations. For the single-agent tool, we visualize the
filtered belief, smoothed belief and intervention predic-
tions. In addition, we show weight convergence and print
out the current optimizer iteration and function output.
The multi-agent tool shows the same information but adds
the performance of all individual agents and their cor-
responding weighted team performance/feedback. These
multiple visualizations allow for real-time monitoring of
the training process to ensure proper convergence and
allowing on the fly changes to parameters.

Fig. 6. The training results for our single-agent model.

7. APPLICATIONS OF THE DEVELOPED TEAM
TRUST MODEL FOR PERFORMANCE

IMPROVEMENT

Our data collection tool/simulation involved the coverage
control problem utilizing Voronoi partitioning. Agents
started in a cluster, Voronoi partitioning was applied,
and agents moved towards their partition’s centroid by
calculating a heading and multiplying it by a speed. An
error is randomly calculated at the start of the simulation
that applies a constant error vector to the heading. This
can be thought of as a constant wind that will cause
agents to stray from their desired course. During human
trials, subjects were given the ability to intervene. When
performing an intervention, the simulation then reduced
the error vector. We use this same simulation but slightly
modified to implement our multi-agent model of trust.
Our goal now is to maximize the team trust prediction in
real time, and to do this, we propose two approaches. In
order to compare these approaches, a baseline was firstly
established where neither method was used (see Figure 7).

7.1 Approach 1: Auto Intervention

Firstly, we use the single-agent model to predict individual
trusts. This is then fed into our model for intervention,
which decides whether an agent requires outside inter-
vention. As the simulation runs, the model is queried at
the same rate the human subject was as to whether or
not an agent needs an intervention. If the model predicts
an agent requires intervention, the simulation applies the
same error reduction technique to the agent. We term this
“auto intervention.” As team trust performance is highly
correlated to individual performance, the results show a
maximization of the team trust level.
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Fig. 7. The baseline team trust prediction when agents do
not act based off of the trust models. The background
represents the trust belief distribution.

7.2 Approach 2: Weighted Voronoi

In this approach, we utilize multiplicatively weighted
Voronoi partitioning. Weighted Voronoi works in a similar
fashion to a non-weighted partitioning with the primary
difference being how the distance function is defined (see
Dobrin (2005)). This function is what defines the edges of
each agent’s area. Therefore, a similar GUI to our data col-
lection tool can be used and the Voronoi distance function
modified. This gives us the ability to increase or decrease
a particular agent’s coverage area using weighted Voronoi
partitioning. As each individual agent is scored a trust
metric, this can be proportionately applied to a weighting
for individual agent’s Voronoi cell. Put simply, a low trust
score leads to a smaller area to be covered by the agent
and vice versa. As our simulation runs, data from each
individual agent is fed into our multi-agent trust model
and the results are used to change the Voronoi weights.
The results of both auto-intervention and the weighted
Voronoi method can be seen in Figure 8.

Fig. 8. The resulting team trust prediction when using
both methods, i.e. auto intervention and weighted
Voronoi partitioning proportionately weighted to
trust metrics. The background represents the trust
belief distribution.

While both models offer good results, the weighted
Voronoi approach is a more realistic real-world implemen-
tation of our model.

8. CONCLUDING REMARKS

In conclusion, trust is a critical factor in the development
and deployment of autonomous systems. With advance-
ments in AI and autonomous systems technology, it is
important to understand how trust is defined and how
it can be modeled to facilitate effective human-robot in-
teractions. The context in which trust is inferred and the
initial level of trust are crucial in determining the level of
autonomy a robot should be given and when intervention is

necessary. The multi-agent trust models developed in this
paper have the potential to greatly increase the efficiency
and performance of robotic swarms, and the use of simula-
tions and empirical data collection can aid in the training
and application of these models. While there are still chal-
lenges to be overcome, the continued research into human-
robot trust will undoubtedly lead to the development of
more capable and trustworthy autonomous systems in the
future.
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