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Abstract: An efficient state of charge (SOC) estimation for LiFePO4 batteries in electric vehicles (EVs) 
has been an open problem so far, largely due to its non-measurable nature. This paper tackles this problem 
by presenting a fractional-order (FO) dynamical framework to unravel and understand the inherent 
dynamics of the LiFePO4 battery which leads to an improved estimation of SOC. First, a FO model (FOM) 
is proposed where the parameters are introduced as nonlinear functionalities of SOC. It has been observed 
that the FO defined as a nonlinear function of SOC is crucial in identifying its progression during the weakly 
measurable flat, open circuit curve of the battery; a property the integer order models (IOMs) fail to capture. 
Second, a fractional order estimator (FOE) is designed incorporating the SOC based nonlinearities of the 
model parameters. The FO derivative being a memory-based operator improves estimation as it can store 
historical information of the speed profiles of the EV. The proposed framework of nonlinear FOM and FOE 
design is validated through both simulation and experimental results. Precise estimation of the battery 
parameters using the proposed framework can be applied to protect the battery management system, 
mitigate overcharge or discharge, prevent hazardous accidents, and enhance battery life, eventually leading 
to an energy-efficient mode of green transportation. 

Keywords: fractional-order, Lithium-ion batteries, electric vehicles, state of charge estimation, green 
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1. INTRODUCTION 

In this era of developing climate consciousness and devising 
new and improved technology solutions to attain a sustainable 
environment, electric vehicles play a promising role. Lithium-
ion batteries (LIBs) are the leading energy storage technology 
for the current as well as next generation transportation 
systems based on clean, green, and sustainable energy 
solutions. The existing LIBs however still suffer from 
technical challenges of safety, reliability, cost, weight and 
lifespan, lack of real-time measurements and parametric 
uncertainties (Dey et al., 2015). 

1.1 A brief recent survey 

Accurate estimation of SOC of Lithium Ferrous Phosphate  
(LFP/ LiFePO4) batteries has long been an open problem. A 
recent industrial survey discloses a global trend of 
manufacturers of EVs shifting to LFP batteries for standard 
range vehicles from the existing Nickel Manganese Cobalt 
(NMC) batteries that have been predominantly used in high 
end EVs so far (Klender, 2021). The current bottlenecks of 
NMC are its safety hazard due to the thermal runaway, scarcity 
of raw materials of Nickel and Cobalt, short lifespan, and high 
cost (Volta, 2021). Though LFP overcomes these limitations, 
however the transition to LFPs in EVs is still in nascent stage 
as the long-standing challenge of error-free estimation of SOC, 
largely due to its limited observability, is unsolved. The 

drawbacks in the existing battery parameter estimation 
research are as follows:  

i. limited capture of battery dynamics through IOMs, 

ii. utilization of a fully linearized model where the 
dependence of the parameters on SOC is ignored, 

iii. failure of conventional methods of observer design 
like extended Kalman filter (EKF) to provide an 
optimal estimate due to the internal linearization (Dey 
et al., 2014), data-driven methods on the other hand 
require huge amount of data for training, apart from 
being black box models (Liu, et al., 2023; Yao et al., 
2023). 

In practical scenarios, one of the short comings in an IO 
equivalent circuit model (ECM) is that the capacitors and 
inductors may not mimic the system behaviour at an in-depth 
capacity, especially, when the relationship between voltage 
and current is not always an integral derivative. These non-
ideal relationships are captured by a FO capacitor or an FO 
inductor called a fractor, whose impedance is termed as 
fractance, the circuit of which is successfully realized in 
(Adhikary et al., 2016). FOM circuits have been found to 
deliver improved results in various real life applications as in 
secure communication and multistable hypogenetic systems 
(Borah et al., 2017; Borah et al., 2018). Experiments on 
frequency spectrum of LFP cells obtained from 
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electrochemical impedance spectroscopy (EIS) reveal that an 
FOM can acquire the dynamics of mid-frequency region such 
as charge transfer reaction and double layer effects and that of 
low frequency region as solid phase diffusion of the battery 
better than the corresponding IOMs (Nasser-Eddine et al., 
2019). Fractional-order calculus has been extended to data 
driven methods such as FO gradient based recurrent neural 
networks for SOC estimation of LIBs in (Wang et al., 2022), 
where it has also been reported that FO constraints can 
stabilise the output and reduce its noise. Recently, an FO 
framework has been developed to co-estimate SOC of a hybrid 
energy storage system, resulting in an improved and faster 
convergence (Li et al., 2023), however the dependence of the 
circuit parameters on the SOC was ignored. An observer for 
SOC estimation of LFP battery using fractional calculus is 
proposed in (Rao et al., 2021) nevertheless, the FOM 
validation is not performed and the proposed observer is a low 
gain linear observer that may not guarantee convergence. The 
FOMs can closely capture the real dynamics of a physical 
system owing to their following extraordinary advantages 
(Borah et al., 2022; Chen et al.,2023):  

i. FO derivative being a non-local operator has the 
capacity to store infinite memory of the past values 
calculated until the present time, unlike IO derivative 
which is a memory less operator,  

ii. FO derivative being a non-ideal operator can 
incorporate non-integer values, unlike IO derivatives,  

iii. the additional FO parameter gives more flexibility and 
a larger stability region.  

1.2 Novelty and contribution 

This paper attempts to address the open problem of SOC 
estimation of LFP batteries by presenting a framework of FO 
modelling and estimation as in the following. 

i. A FO framework is proposed where the FO operator 
along with the circuit parameters in the LFP battery 
model are defined as nonlinear functions of SOC, and 
validated experimentally. The authors claim novelty in 
this innovative approach, as it not only improves model 
accuracy but also adds mathematical dependencies 
between measured voltage and SOC beyond the flat 
open circuit curve; a critical and partially understood 
dynamics of LFP battery. In a fresh attempt, our work 
validates the above nonlinear functionalities of 
parameters with SOC with experimental evidence in the 
frequency domain; a contribution not made so far in the 
existing literature to the best of the authors’ knowledge. 
This novelty helps to understand the inter correlation 
and progression of the unknown LFP battery physics as 
the SOC varies during dynamic operating conditions.  
Besides, the FOM also contributes in capturing the 
dynamics of solid-phase diffusion and charge transfer 
reaction dynamics, which otherwise remain unobserved 
in an IOM. 

ii. A nonlinear observer is designed using the FO 
Lyapunov stability criterion to estimate the SOC 
performance, incorporating the SOC based 
nonlinearities of the model parameters. It is found to 

generate improved results in comparison to existing FO 
estimation techniques for LFP. 

The paper is organized as follows. A brief introduction and 
contribution of this work is highlighted in Section 1. The first 
step of the FO dynamical framework with the proposed FOM 
and its parameter identification are stated in Section 2. Section 
3 details the nonlinear observer design for SOC estimation. 
The results are validated and discussed in Section 4 and the 
paper is finally concluded in Section 5. 

2. PROPOSED FRACTIONAL-ORDER MODEL  

This section presents the fundamentals of fractional calculus 
followed by the first step of the proposed framework, i.e. 
design of the FOM. 

2.1 Preliminaries of fractional calculus 

The Caputo fractional derivative of order α of a continuous 
function f(t) is defined as in (1) (Monje et al., 2010).        
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𝑑𝑑𝑡𝑡𝛼𝛼 =

{
1

Γ(𝑚𝑚−α) ∫ 𝑓𝑓(𝑚𝑚)(𝜏𝜏)
(𝑡𝑡−𝜏𝜏)𝛼𝛼−𝑚𝑚+1

𝑡𝑡
0 𝑑𝑑𝑑𝑑, 𝑚𝑚 − 1 < 𝛼𝛼 < 𝑚𝑚, 𝑚𝑚 ∈ ℕ  
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The Laplace transform of the Caputo fractional derivative is: 

  𝐿𝐿 {𝑑𝑑𝛼𝛼𝑓𝑓(𝑡𝑡)
𝑑𝑑𝑡𝑡𝛼𝛼 } = 𝑠𝑠𝛼𝛼𝐿𝐿{𝑓𝑓(𝑡𝑡)} − ∑ 𝑠𝑠𝛼𝛼−𝑘𝑘−1𝑓𝑓(𝑘𝑘)(0)𝑚𝑚−1

𝑘𝑘=0               (2) 

Theorem 1 (Monje et al., 2010): The equilibrium points of a 
commensurate FO nonlinear dynamical system (FONLS)  are 
asymptotically stable if for all the eigenvalues 𝜆𝜆𝑖𝑖, (𝑖𝑖 =
 1, 2, . . . , 𝑛𝑛) of the Jacobian matrix 𝐽𝐽 =  𝜕𝜕𝑓𝑓

𝜕𝜕𝜕𝜕⁄ , where 𝑓𝑓 =
 [𝑓𝑓1, 𝑓𝑓2, . . . , 𝑓𝑓𝑛𝑛 ]T, evaluated at the equilibrium point, satisfy the 
condition: |𝑎𝑎𝑎𝑎𝑎𝑎(𝑒𝑒𝑖𝑖𝑎𝑎(𝐽𝐽))|  =  |𝑎𝑎𝑎𝑎𝑎𝑎(𝜆𝜆𝑖𝑖)|  >  𝛼𝛼𝛼𝛼/2, 𝑖𝑖 =
 1,2, . . . , 𝑛𝑛. 

Lemma 1: (Aguila-Camacho, Duarte-Mermoud & Gallegos, 
2014) If 𝜕𝜕(𝑡𝑡) ∈ ℝ is a continuous and derivable function, then, 
for any time instant 𝑡𝑡 ≥ 0 , 

    12 𝐷𝐷𝛼𝛼𝜕𝜕2(𝑡𝑡) ≤ 𝜕𝜕(𝑡𝑡)𝐷𝐷𝛼𝛼𝜕𝜕(𝑡𝑡),                 ∀𝛼𝛼 ∈ (0,1]  

where 𝐷𝐷𝛼𝛼𝜕𝜕(𝑡𝑡) is the Caputo fractional derivative of 𝜕𝜕(𝑡𝑡) of 
FO 𝛼𝛼. Based on the above preliminaries, the FO dynamical 
framework is presented in the following sections 

2.2 FO Modelling and Parameter identification  

The generalized form of FONLS is presented in (3) and (4), 

𝐷𝐷𝛼𝛼𝜕𝜕(𝑡𝑡) = 𝐴𝐴(𝜕𝜕)𝜕𝜕(𝑡𝑡) + 𝑎𝑎(𝜕𝜕, 𝑢𝑢)                                  (3) 

𝑦𝑦 = 𝐶𝐶𝜕𝜕                                                                        (4) 

where 𝜕𝜕 is the vector containing the unmeasurable states, 𝑢𝑢 and 
𝑦𝑦 are measurable input and output vectors, 𝐴𝐴(𝜕𝜕) represents the 
nonlinear function in 𝜕𝜕 and 𝛼𝛼 = {𝛼𝛼1, 𝛼𝛼2, … , 𝛼𝛼𝑛𝑛}  is the FO 
parameter vector such that 𝛼𝛼 ∈ (0,1]. 

The first step of the framework is presented in Fig. 1. 
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electrochemical impedance spectroscopy (EIS) reveal that an 
FOM can acquire the dynamics of mid-frequency region such 
as charge transfer reaction and double layer effects and that of 
low frequency region as solid phase diffusion of the battery 
better than the corresponding IOMs (Nasser-Eddine et al., 
2019). Fractional-order calculus has been extended to data 
driven methods such as FO gradient based recurrent neural 
networks for SOC estimation of LIBs in (Wang et al., 2022), 
where it has also been reported that FO constraints can 
stabilise the output and reduce its noise. Recently, an FO 
framework has been developed to co-estimate SOC of a hybrid 
energy storage system, resulting in an improved and faster 
convergence (Li et al., 2023), however the dependence of the 
circuit parameters on the SOC was ignored. An observer for 
SOC estimation of LFP battery using fractional calculus is 
proposed in (Rao et al., 2021) nevertheless, the FOM 
validation is not performed and the proposed observer is a low 
gain linear observer that may not guarantee convergence. The 
FOMs can closely capture the real dynamics of a physical 
system owing to their following extraordinary advantages 
(Borah et al., 2022; Chen et al.,2023):  

i. FO derivative being a non-local operator has the 
capacity to store infinite memory of the past values 
calculated until the present time, unlike IO derivative 
which is a memory less operator,  

ii. FO derivative being a non-ideal operator can 
incorporate non-integer values, unlike IO derivatives,  

iii. the additional FO parameter gives more flexibility and 
a larger stability region.  

1.2 Novelty and contribution 

This paper attempts to address the open problem of SOC 
estimation of LFP batteries by presenting a framework of FO 
modelling and estimation as in the following. 

i. A FO framework is proposed where the FO operator 
along with the circuit parameters in the LFP battery 
model are defined as nonlinear functions of SOC, and 
validated experimentally. The authors claim novelty in 
this innovative approach, as it not only improves model 
accuracy but also adds mathematical dependencies 
between measured voltage and SOC beyond the flat 
open circuit curve; a critical and partially understood 
dynamics of LFP battery. In a fresh attempt, our work 
validates the above nonlinear functionalities of 
parameters with SOC with experimental evidence in the 
frequency domain; a contribution not made so far in the 
existing literature to the best of the authors’ knowledge. 
This novelty helps to understand the inter correlation 
and progression of the unknown LFP battery physics as 
the SOC varies during dynamic operating conditions.  
Besides, the FOM also contributes in capturing the 
dynamics of solid-phase diffusion and charge transfer 
reaction dynamics, which otherwise remain unobserved 
in an IOM. 

ii. A nonlinear observer is designed using the FO 
Lyapunov stability criterion to estimate the SOC 
performance, incorporating the SOC based 
nonlinearities of the model parameters. It is found to 

generate improved results in comparison to existing FO 
estimation techniques for LFP. 

The paper is organized as follows. A brief introduction and 
contribution of this work is highlighted in Section 1. The first 
step of the FO dynamical framework with the proposed FOM 
and its parameter identification are stated in Section 2. Section 
3 details the nonlinear observer design for SOC estimation. 
The results are validated and discussed in Section 4 and the 
paper is finally concluded in Section 5. 

2. PROPOSED FRACTIONAL-ORDER MODEL  
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followed by the first step of the proposed framework, i.e. 
design of the FOM. 
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function f(t) is defined as in (1) (Monje et al., 2010).        
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Lemma 1: (Aguila-Camacho, Duarte-Mermoud & Gallegos, 
2014) If 𝜕𝜕(𝑡𝑡) ∈ ℝ is a continuous and derivable function, then, 
for any time instant 𝑡𝑡 ≥ 0 , 
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FO 𝛼𝛼. Based on the above preliminaries, the FO dynamical 
framework is presented in the following sections 
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where 𝜕𝜕 is the vector containing the unmeasurable states, 𝑢𝑢 and 
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Fig. 1. Framework of FO modelling and identification 

The FOM of a battery is conceptually built from EIS, where 
the impedance is calculated from the terminal voltage in 
response to a small input alternating current. The Nyquist plot 
of the impedance spectrum is then divided in three frequency 
regions: low (solid phase diffusion), mid (charge transfer 
reaction, double layer effect) and high (ohmic polarization). 
The low frequency region in the Nyquist plot obtained from 
the EIS experiment is modelled using a FO element called the 
constant phase element (CPE). It can attain non-integral values 
unlike a conventional capacitor and thus model the fractional 
solid phase diffusion dynamics better. The resultant FO-ECM 
is depicted in Fig.2, where 𝑉𝑉𝑜𝑜𝑜𝑜  and 𝑉𝑉𝑡𝑡 are open circuit and 
terminal voltages of the battery, respectively. 

 
Fig. 2 Proposed FOM of the LFP battery, depicting the dynamics 
during low, high and mid frequency ranges 

The FO-ECM in Fig. 2 results in an FONLS from (3)-(4) as in 
(5) and (6) 

{
 
 
 

 
 
 𝐷𝐷𝛼𝛼1𝑥𝑥1(𝑡𝑡) = −𝑢𝑢

(𝑡𝑡)
𝑄𝑄                                                                             

𝐷𝐷𝛼𝛼2𝑥𝑥2(𝑡𝑡) = −
1

𝑅𝑅1(𝑥𝑥1)𝐶𝐶1(𝑥𝑥1)
𝑥𝑥2(𝑡𝑡) +

1
𝐶𝐶1(𝑥𝑥1)

𝑢𝑢(𝑡𝑡)             (5)

𝐷𝐷𝛼𝛼3𝑥𝑥3(𝑡𝑡) = −
1

𝑅𝑅2(𝑥𝑥1)𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥1)
𝑥𝑥3(𝑡𝑡) +

1
𝑅𝑅2(𝑥𝑥1)𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥1)

𝑢𝑢(𝑡𝑡)

𝐷𝐷𝛼𝛼4𝑥𝑥4(𝑡𝑡) = −𝛾𝛾{𝑥𝑥4(𝑡𝑡) − 𝑉𝑉𝑡𝑡}                                                            

 

output voltage 𝑦𝑦 = 𝐶𝐶𝑥𝑥 = [0 0 0 1] 𝑥𝑥4                                  (6) 

where, 𝑉𝑉𝑡𝑡 = 𝑉𝑉𝑜𝑜𝑜𝑜(𝑥𝑥1) − 𝑥𝑥2(𝑡𝑡) − 𝑥𝑥3(𝑡𝑡) − 𝑅𝑅0(𝑥𝑥1)𝑢𝑢(𝑡𝑡), and 

𝛼𝛼 = {𝛼𝛼1, 𝛼𝛼2, 𝛼𝛼3, 𝛼𝛼4} = {1,1, 𝛼𝛼3, 1}. The state vector 𝑥𝑥 =
[𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4]𝑇𝑇  is such that 𝑥𝑥1 = 𝑆𝑆𝑆𝑆𝐶𝐶, 𝑥𝑥2 is the voltage 
across the 𝑅𝑅1𝐶𝐶1 pair, 𝑥𝑥3 is the voltage across the 𝑅𝑅2𝐶𝐶𝐶𝐶𝐶𝐶 pair 
and 𝑥𝑥4 is the output terminal voltage, 𝑉𝑉𝑡𝑡 at equilibrium. 𝑥𝑥1, 𝑥𝑥2 
and 𝑥𝑥3 are non-measurable states and 𝑥𝑥4 is a measurable state 
at equilibrium. 𝑄𝑄 is the battery nominal capacity, 𝑢𝑢 is the input 
current 𝐼𝐼 which is positive for discharging and negative for 
charging operations. 

Once the frequency domain experiment is conducted, the 
parameter identification of the above FO-ECM in (5) and (6) 
is carried out using global optimization techniques. The LFP 
battery is subjected to an Hybrid Pulse Power Characterization 
(HPPC) or any pulse load current for each 10% drop of SOC 
and allowed to rest for 10 minutes. It is repeated until the lower 
cut-off voltage of the battery is achieved. The 𝑉𝑉𝑡𝑡 at the resting 
period gives the 𝑉𝑉𝑜𝑜𝑜𝑜  and the corresponding relationship of the  
𝑉𝑉𝑜𝑜𝑜𝑜 − 𝑆𝑆𝑆𝑆𝐶𝐶 curve, i.e. 𝑉𝑉𝑜𝑜𝑜𝑜(𝑥𝑥1) is derived. Now the optimization 
problem is framed such that the error between the experimental 
output terminal voltage and the model output voltage is 
minimized as given in (7). 

min 𝑒𝑒(�̂�𝜃) = 1
𝑞𝑞 [∑ (𝑉𝑉𝑡𝑡(𝑒𝑒𝑒𝑒𝑒𝑒)(𝑡𝑡𝑘𝑘) − 𝑉𝑉𝑡𝑡(𝐹𝐹𝐹𝐹𝐹𝐹)(𝑡𝑡𝑘𝑘))2𝑞𝑞

𝑘𝑘=1 ]
1
2           (7) 

In (7), 𝑉𝑉𝑡𝑡(𝑒𝑒𝑒𝑒𝑒𝑒)(𝑡𝑡𝑘𝑘) and 𝑉𝑉𝑡𝑡(𝐹𝐹𝐹𝐹𝐹𝐹)(𝑡𝑡𝑘𝑘) are the experimental 
terminal voltage and the FOM terminal voltage obtained at 𝑘𝑘𝑡𝑡ℎ 
sample and 𝜃𝜃 = [𝑅𝑅0, 𝑅𝑅1, 𝑅𝑅2, 𝐶𝐶1, 𝐶𝐶𝐶𝐶𝐶𝐶, 𝛼𝛼3] represents the set of 
parameters to be optimized. The parameters are identified once 
the cost function converges and likewise the parameter 
identification is performed for varying values of SOC. The 
identified parameters are thus nonlinear functions dependent 
on SOC. Following the parameter identification, we proceed 
to design an estimator/ observer to estimate the unmeasurable 
state, SOC in the forthcoming section. 

3. DESIGN OF OBSERVER 

The second step of the framework is the design of a nonlinear 
observer in the FO sense presented in this section. 

Let, 𝑏𝑏 = 1
𝑄𝑄, 𝑘𝑘1(𝑥𝑥1) =

1
𝑅𝑅1(𝑒𝑒1)𝐶𝐶1(𝑒𝑒1)

, 𝑘𝑘2(𝑥𝑥1) =
1

𝑅𝑅2(𝑒𝑒1)𝐶𝐶𝐶𝐶𝐶𝐶(𝑒𝑒1)
, 

𝑘𝑘3(𝑥𝑥1) = 𝑉𝑉𝑜𝑜𝑜𝑜(𝑥𝑥1), 𝑝𝑝1(𝑥𝑥1) =
1

𝐶𝐶1(𝑒𝑒1)
, 𝑝𝑝2(𝑥𝑥1) =

1
𝐶𝐶𝐶𝐶𝐶𝐶(𝑒𝑒1)

, 
𝑝𝑝3(𝑥𝑥1) = 𝑅𝑅0(𝑥𝑥1)  so that (5) and (6) simplify to (8) and (9). 

{
 

 𝐷𝐷𝛼𝛼1𝑥𝑥1 = −𝑏𝑏𝑢𝑢                                                             
𝐷𝐷𝛼𝛼2𝑥𝑥2 = −𝑘𝑘1(𝑥𝑥1)𝑥𝑥2 + 𝑝𝑝1(𝑥𝑥1)𝑢𝑢                              
𝐷𝐷𝛼𝛼3𝑥𝑥3 = −𝑘𝑘2(𝑥𝑥1)𝑥𝑥3 + 𝑝𝑝2(𝑥𝑥1)𝑢𝑢                               
𝐷𝐷𝛼𝛼4𝑥𝑥4 = −𝛾𝛾{𝑥𝑥4 − 𝑉𝑉𝑜𝑜𝑜𝑜(𝑥𝑥1) + 𝑥𝑥2 + 𝑥𝑥3 + 𝑝𝑝3(𝑥𝑥1)𝑢𝑢}

        (8) 

𝑦𝑦 = 𝑥𝑥4                                                                               (9) 

The general form of FO observed model is given by, 

𝐷𝐷𝛼𝛼�̂�𝑥(𝑡𝑡) = 𝐴𝐴(�̂�𝑥)�̂�𝑥(𝑡𝑡) + 𝑔𝑔(�̂�𝑥, 𝑢𝑢) + 𝐿𝐿(𝑦𝑦 − �̂�𝑦)                    (10) 

�̂�𝑦 = 𝐶𝐶�̂�𝑥(𝑡𝑡)                                                                                  (11) 

where �̂�𝑥(𝑡𝑡)is the estimation of 𝑥𝑥(𝑡𝑡), 𝐿𝐿 = [𝑙𝑙1 𝑙𝑙2 𝑙𝑙3    𝑙𝑙4]𝑇𝑇 is 
the observer gain matrix to be designed. 

The observed FO battery model is presented in (12). 
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{
 

 𝐷𝐷
𝛼𝛼1𝑥𝑥1 = −𝑏𝑏𝑏𝑏 + 𝑙𝑙1(𝑥𝑥4 − 𝑥𝑥4)                                                

𝐷𝐷𝛼𝛼2𝑥𝑥2 = −𝑘𝑘10(𝑥𝑥1)𝑥𝑥2 + 𝑝𝑝10(𝑥𝑥1)𝑏𝑏 + 𝑙𝑙2(𝑥𝑥4 − 𝑥𝑥4)                 
𝐷𝐷𝛼𝛼3𝑥𝑥3 = −𝑘𝑘20(𝑥𝑥1)𝑥𝑥3 + 𝑝𝑝20(𝑥𝑥1)𝑏𝑏 + 𝑙𝑙3(𝑥𝑥4 − 𝑥𝑥4)                 
𝐷𝐷𝛼𝛼4𝑥𝑥4 = 𝛾𝛾{𝑘𝑘30(𝑥𝑥1) − 𝑥𝑥2 − 𝑥𝑥3 − 𝑝𝑝30(𝑥𝑥1)𝑏𝑏 + 𝑙𝑙4(𝑥𝑥4 − 𝑥𝑥4)}

   (12) 

Here in (9), 𝑘𝑘𝑖𝑖0(∙) and 𝑝𝑝𝑖𝑖0(∙) are the nominal representations of 
𝑘𝑘𝑖𝑖(∙) and 𝑝𝑝𝑖𝑖(∙) and are chosen as locally Lipschitz and bounded 
defined as follows 𝑘𝑘𝑖𝑖0(∙) ≤ −𝑚𝑚𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 3. 

The estimation error is defined as, 𝑒𝑒 = 𝑥𝑥 − �̂�𝑥 and the error 
dynamics is defined in (13).  

{ 
 
  

𝐷𝐷𝛼𝛼1𝑒𝑒1 = −𝑙𝑙1𝑒𝑒4                                                                                              
𝐷𝐷𝛼𝛼2𝑒𝑒2 = −𝑘𝑘1(𝑥𝑥1)𝑥𝑥2 + 𝑘𝑘10(�̂�𝑥1)�̂�𝑥2 + {𝑝𝑝1(𝑥𝑥1) − 𝑝𝑝10(�̂�𝑥1)}𝑏𝑏 − 𝑙𝑙2𝑒𝑒4             
𝐷𝐷𝛼𝛼3𝑒𝑒3 = −𝑘𝑘2(𝑥𝑥1)𝑥𝑥3 + 𝑘𝑘20(�̂�𝑥1)�̂�𝑥3 + {𝑝𝑝2(𝑥𝑥1) − 𝑝𝑝20(�̂�𝑥1)}𝑏𝑏 − 𝑙𝑙3𝑒𝑒4   (13)
𝐷𝐷𝛼𝛼4𝑒𝑒4 = 𝑘𝑘3(𝑥𝑥1) − 𝑘𝑘30(�̂�𝑥1) + 𝑒𝑒2 + 𝑒𝑒3 + {𝑝𝑝3(𝑥𝑥1) − 𝑝𝑝30(�̂�𝑥1)}𝑏𝑏 − 𝑙𝑙4𝑒𝑒4      

 

Further mathematical calculation reveals 
−𝑘𝑘1(𝑥𝑥1)𝑥𝑥2 + 𝑘𝑘10(�̂�𝑥1)�̂�𝑥2

= −𝑘𝑘10(�̂�𝑥1)𝑒𝑒2 + {𝑘𝑘10(�̂�𝑥1) − 𝑘𝑘1(𝑥𝑥1)}𝑥𝑥2 
and 
−𝑘𝑘2(𝑥𝑥1)𝑥𝑥3 + 𝑘𝑘20(�̂�𝑥1)�̂�𝑥3

= −𝑘𝑘20(�̂�𝑥1)𝑒𝑒3 + {𝑘𝑘20(�̂�𝑥1) − 𝑘𝑘2(𝑥𝑥1)}𝑥𝑥3 
which can be substituted in (13). 

The boundedness of the following function in (14) are defined 
as,  

‖{𝑘𝑘10(�̂�𝑥1) − 𝑘𝑘1(𝑥𝑥1)}𝑥𝑥2‖ + ‖{𝑝𝑝1(𝑥𝑥1) − 𝑝𝑝10(�̂�𝑥1)}𝑏𝑏‖ ≤ 𝑀𝑀1  

‖{𝑘𝑘20(�̂�𝑥1) − 𝑘𝑘2(𝑥𝑥1)}𝑥𝑥3‖ + ‖{𝑝𝑝2(𝑥𝑥1) − 𝑝𝑝20(�̂�𝑥1)}𝑏𝑏‖ ≤ 𝑀𝑀2  (14) 

‖𝑘𝑘3(𝑥𝑥1) − 𝑘𝑘30(�̂�𝑥1)‖ + ‖{𝑝𝑝3(𝑥𝑥1) − 𝑝𝑝30(�̂�𝑥1)}𝑏𝑏‖ ≤ 𝑀𝑀3  

where 𝑀𝑀𝑖𝑖 1 ≤ 𝑖𝑖 ≤ 3 are all positive bounded constants. 

The Lyapunov function is chosen as a positive definite 
function as in (15). 
𝑉𝑉(𝑒𝑒) = 1

2 (𝑒𝑒1
2 + 𝑒𝑒22 + 𝑒𝑒32 + 𝑒𝑒42)                                        (15) 

The error dynamics in (16) is obtained using Caputo fractional 
derivative (1) and lemma 1 in 𝑉𝑉(𝑒𝑒) 

𝐷𝐷𝛼𝛼𝑉𝑉(𝑒𝑒) ≤ 𝑒𝑒1𝐷𝐷𝛼𝛼(𝑒𝑒1) + 𝑒𝑒2𝐷𝐷𝛼𝛼(𝑒𝑒2) + 𝑒𝑒3𝐷𝐷𝛼𝛼(𝑒𝑒3) + 𝑒𝑒4𝐷𝐷𝛼𝛼(𝑒𝑒4) 

                 ≤ 𝑒𝑒1(−𝑙𝑙1𝑒𝑒4) + 𝑒𝑒2(−𝑚𝑚1𝑒𝑒2 + 𝑀𝑀1 − 𝑙𝑙2𝑒𝑒4 )
+ 𝑒𝑒3(−𝑚𝑚2𝑒𝑒3 + 𝑀𝑀2 − 𝑙𝑙3𝑒𝑒4 ) + 𝑒𝑒4(𝑀𝑀3 + 𝑒𝑒2
+ 𝑒𝑒3 − 𝑙𝑙4𝑒𝑒4) 

                 ≤ −𝑚𝑚1𝑒𝑒22 − 𝑚𝑚2𝑒𝑒32 − 𝑙𝑙4𝑒𝑒42 − 𝑙𝑙2𝑒𝑒4𝑒𝑒2 − 𝑙𝑙3𝑒𝑒4𝑒𝑒3 +
𝑒𝑒2𝑒𝑒4 + 𝑒𝑒4𝑒𝑒3 + 𝑀𝑀1𝑒𝑒2+𝑀𝑀2𝑒𝑒3+𝑀𝑀3𝑒𝑒4                                  (16) 

The observer gains are chosen such that 𝐷𝐷𝛼𝛼𝑉𝑉(𝑒𝑒) → 0 as time 
𝑡𝑡 → ∞. 

4. EXPERIMENTAL RESULTS AND DISCUSSIONS 

The experimental validations of the simulation results are 
discussed in the following two subsections. 

4.1 Step 1 of the framework: parameter identification of FOM 

This subsection implements the first step of the FO framework 
discussed in Section 2.2. First, we utilize EIS experimental 
data to demonstrate how an FOM more accurately captures the 

frequency response relative to an IOM. Then, we identify the 
FOM parameters from drive cycle data. 

The laboratory set up for the EIS experiment consist of a 
Gamry1010E instrument which has a maximum applied 
current of ±1 A, maximum applied potential of ±12 V and a 
frequency range of 10 μHz - 2 MHz It is interfaced with a 
workstation that processes the data. EIS experiments are 
conducted on a fresh 18650 LFP cell of 3.3 V nominal voltage, 
1.2 Ah capacity. The input to the EIS is an alternating current 
of 0.1 A and the frequency spectrum is varied from 0.01 Hz to 
100 kHz at 250 C. The Nyquist plot derived from the EIS is 
plotted in blue and the fitted model (using the circuit illustrated 
previously in Fig. 2), in red in Fig. 3. It is seen that the FOM 
fits the experimental frequency data better by capturing the 
solid phase diffusion as shown in Fig. 3b, than that by an IOM, 
in Fig. 3a) where the CPE is replaced by an integral capacitor. 

 
a) IOM  

 
b) FOM 

Fig. 3. Nyquist plot spectrum from EIS experiment (blue) fitted by 
the equivalent circuit models (red) 

The input current of the EIS experiment in the frequency 
domain has a constant profile, whereas the current profiles in 
real life scenarios are highly fluctuating. This calls for a 
parameter identification in the time domain using current 
profiles under actual operating conditions. The experimental 
setup is shown in Fig. 4 which displays an Arbin laboratory 
battery tester (LBT) with a channel voltage range of 0-10V,  
maximum channel current of 10A divided into four ranges of 
10A / 500 mA/ 20 mA/ 1mA and eight number of channels.  

 
Fig.4 Experimental set up of battery tester 

An Urban Dynamometer Driving Schedule (UDDS) profile is 
taken for the purpose as shown in Fig 5 and the parameters are 
identified such that each parameter is a nonlinear function of 
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{
 

 𝐷𝐷
𝛼𝛼1𝑥𝑥1 = −𝑏𝑏𝑏𝑏 + 𝑙𝑙1(𝑥𝑥4 − 𝑥𝑥4)                                                

𝐷𝐷𝛼𝛼2𝑥𝑥2 = −𝑘𝑘10(𝑥𝑥1)𝑥𝑥2 + 𝑝𝑝10(𝑥𝑥1)𝑏𝑏 + 𝑙𝑙2(𝑥𝑥4 − 𝑥𝑥4)                 
𝐷𝐷𝛼𝛼3𝑥𝑥3 = −𝑘𝑘20(𝑥𝑥1)𝑥𝑥3 + 𝑝𝑝20(𝑥𝑥1)𝑏𝑏 + 𝑙𝑙3(𝑥𝑥4 − 𝑥𝑥4)                 
𝐷𝐷𝛼𝛼4𝑥𝑥4 = 𝛾𝛾{𝑘𝑘30(𝑥𝑥1) − 𝑥𝑥2 − 𝑥𝑥3 − 𝑝𝑝30(𝑥𝑥1)𝑏𝑏 + 𝑙𝑙4(𝑥𝑥4 − 𝑥𝑥4)}

   (12) 

Here in (9), 𝑘𝑘𝑖𝑖0(∙) and 𝑝𝑝𝑖𝑖0(∙) are the nominal representations of 
𝑘𝑘𝑖𝑖(∙) and 𝑝𝑝𝑖𝑖(∙) and are chosen as locally Lipschitz and bounded 
defined as follows 𝑘𝑘𝑖𝑖0(∙) ≤ −𝑚𝑚𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 3. 

The estimation error is defined as, 𝑒𝑒 = 𝑥𝑥 − �̂�𝑥 and the error 
dynamics is defined in (13).  

{ 
 
  

𝐷𝐷𝛼𝛼1𝑒𝑒1 = −𝑙𝑙1𝑒𝑒4                                                                                              
𝐷𝐷𝛼𝛼2𝑒𝑒2 = −𝑘𝑘1(𝑥𝑥1)𝑥𝑥2 + 𝑘𝑘10(�̂�𝑥1)�̂�𝑥2 + {𝑝𝑝1(𝑥𝑥1) − 𝑝𝑝10(�̂�𝑥1)}𝑏𝑏 − 𝑙𝑙2𝑒𝑒4             
𝐷𝐷𝛼𝛼3𝑒𝑒3 = −𝑘𝑘2(𝑥𝑥1)𝑥𝑥3 + 𝑘𝑘20(�̂�𝑥1)�̂�𝑥3 + {𝑝𝑝2(𝑥𝑥1) − 𝑝𝑝20(�̂�𝑥1)}𝑏𝑏 − 𝑙𝑙3𝑒𝑒4   (13)
𝐷𝐷𝛼𝛼4𝑒𝑒4 = 𝑘𝑘3(𝑥𝑥1) − 𝑘𝑘30(�̂�𝑥1) + 𝑒𝑒2 + 𝑒𝑒3 + {𝑝𝑝3(𝑥𝑥1) − 𝑝𝑝30(�̂�𝑥1)}𝑏𝑏 − 𝑙𝑙4𝑒𝑒4      

 

Further mathematical calculation reveals 
−𝑘𝑘1(𝑥𝑥1)𝑥𝑥2 + 𝑘𝑘10(�̂�𝑥1)�̂�𝑥2

= −𝑘𝑘10(�̂�𝑥1)𝑒𝑒2 + {𝑘𝑘10(�̂�𝑥1) − 𝑘𝑘1(𝑥𝑥1)}𝑥𝑥2 
and 
−𝑘𝑘2(𝑥𝑥1)𝑥𝑥3 + 𝑘𝑘20(�̂�𝑥1)�̂�𝑥3

= −𝑘𝑘20(�̂�𝑥1)𝑒𝑒3 + {𝑘𝑘20(�̂�𝑥1) − 𝑘𝑘2(𝑥𝑥1)}𝑥𝑥3 
which can be substituted in (13). 

The boundedness of the following function in (14) are defined 
as,  

‖{𝑘𝑘10(�̂�𝑥1) − 𝑘𝑘1(𝑥𝑥1)}𝑥𝑥2‖ + ‖{𝑝𝑝1(𝑥𝑥1) − 𝑝𝑝10(�̂�𝑥1)}𝑏𝑏‖ ≤ 𝑀𝑀1  

‖{𝑘𝑘20(�̂�𝑥1) − 𝑘𝑘2(𝑥𝑥1)}𝑥𝑥3‖ + ‖{𝑝𝑝2(𝑥𝑥1) − 𝑝𝑝20(�̂�𝑥1)}𝑏𝑏‖ ≤ 𝑀𝑀2  (14) 

‖𝑘𝑘3(𝑥𝑥1) − 𝑘𝑘30(�̂�𝑥1)‖ + ‖{𝑝𝑝3(𝑥𝑥1) − 𝑝𝑝30(�̂�𝑥1)}𝑏𝑏‖ ≤ 𝑀𝑀3  

where 𝑀𝑀𝑖𝑖 1 ≤ 𝑖𝑖 ≤ 3 are all positive bounded constants. 

The Lyapunov function is chosen as a positive definite 
function as in (15). 
𝑉𝑉(𝑒𝑒) = 1

2 (𝑒𝑒1
2 + 𝑒𝑒22 + 𝑒𝑒32 + 𝑒𝑒42)                                        (15) 

The error dynamics in (16) is obtained using Caputo fractional 
derivative (1) and lemma 1 in 𝑉𝑉(𝑒𝑒) 

𝐷𝐷𝛼𝛼𝑉𝑉(𝑒𝑒) ≤ 𝑒𝑒1𝐷𝐷𝛼𝛼(𝑒𝑒1) + 𝑒𝑒2𝐷𝐷𝛼𝛼(𝑒𝑒2) + 𝑒𝑒3𝐷𝐷𝛼𝛼(𝑒𝑒3) + 𝑒𝑒4𝐷𝐷𝛼𝛼(𝑒𝑒4) 

                 ≤ 𝑒𝑒1(−𝑙𝑙1𝑒𝑒4) + 𝑒𝑒2(−𝑚𝑚1𝑒𝑒2 + 𝑀𝑀1 − 𝑙𝑙2𝑒𝑒4 )
+ 𝑒𝑒3(−𝑚𝑚2𝑒𝑒3 + 𝑀𝑀2 − 𝑙𝑙3𝑒𝑒4 ) + 𝑒𝑒4(𝑀𝑀3 + 𝑒𝑒2
+ 𝑒𝑒3 − 𝑙𝑙4𝑒𝑒4) 

                 ≤ −𝑚𝑚1𝑒𝑒22 − 𝑚𝑚2𝑒𝑒32 − 𝑙𝑙4𝑒𝑒42 − 𝑙𝑙2𝑒𝑒4𝑒𝑒2 − 𝑙𝑙3𝑒𝑒4𝑒𝑒3 +
𝑒𝑒2𝑒𝑒4 + 𝑒𝑒4𝑒𝑒3 + 𝑀𝑀1𝑒𝑒2+𝑀𝑀2𝑒𝑒3+𝑀𝑀3𝑒𝑒4                                  (16) 

The observer gains are chosen such that 𝐷𝐷𝛼𝛼𝑉𝑉(𝑒𝑒) → 0 as time 
𝑡𝑡 → ∞. 

4. EXPERIMENTAL RESULTS AND DISCUSSIONS 

The experimental validations of the simulation results are 
discussed in the following two subsections. 

4.1 Step 1 of the framework: parameter identification of FOM 

This subsection implements the first step of the FO framework 
discussed in Section 2.2. First, we utilize EIS experimental 
data to demonstrate how an FOM more accurately captures the 

frequency response relative to an IOM. Then, we identify the 
FOM parameters from drive cycle data. 

The laboratory set up for the EIS experiment consist of a 
Gamry1010E instrument which has a maximum applied 
current of ±1 A, maximum applied potential of ±12 V and a 
frequency range of 10 μHz - 2 MHz It is interfaced with a 
workstation that processes the data. EIS experiments are 
conducted on a fresh 18650 LFP cell of 3.3 V nominal voltage, 
1.2 Ah capacity. The input to the EIS is an alternating current 
of 0.1 A and the frequency spectrum is varied from 0.01 Hz to 
100 kHz at 250 C. The Nyquist plot derived from the EIS is 
plotted in blue and the fitted model (using the circuit illustrated 
previously in Fig. 2), in red in Fig. 3. It is seen that the FOM 
fits the experimental frequency data better by capturing the 
solid phase diffusion as shown in Fig. 3b, than that by an IOM, 
in Fig. 3a) where the CPE is replaced by an integral capacitor. 

 
a) IOM  

 
b) FOM 

Fig. 3. Nyquist plot spectrum from EIS experiment (blue) fitted by 
the equivalent circuit models (red) 

The input current of the EIS experiment in the frequency 
domain has a constant profile, whereas the current profiles in 
real life scenarios are highly fluctuating. This calls for a 
parameter identification in the time domain using current 
profiles under actual operating conditions. The experimental 
setup is shown in Fig. 4 which displays an Arbin laboratory 
battery tester (LBT) with a channel voltage range of 0-10V,  
maximum channel current of 10A divided into four ranges of 
10A / 500 mA/ 20 mA/ 1mA and eight number of channels.  

 
Fig.4 Experimental set up of battery tester 

An Urban Dynamometer Driving Schedule (UDDS) profile is 
taken for the purpose as shown in Fig 5 and the parameters are 
identified such that each parameter is a nonlinear function of 

SOC. In order to mitigate the impact of hysteresis on the 
battery dynamics, 𝑉𝑉𝑜𝑜𝑜𝑜  is taken as the average of the charging 
and discharging current profiles.  

 
Fig.5 UDDS input current profile 

The parameter identification is carried out using chaos based 
PSO (Duan et al., 2022), where the cost function is optimized 
with respect to three indices: position, speed and fitness. A 
peculiar characteristic of chaotic trajectories is that they never 
repeat their paths or intersect. This property of chaos 
introduces a randomness in the PSO algorithm which 
facilitates the particles to explore previously unexplored 
regions of the solution space, escape local optima, and thereby 
attain global optima in terms of potentially finding better 
solutions (Tian, 2017). This is the reason behind using chaos-
based PSO for parameter identification, as opposed to 
gradient-based optimizers, for example. The hyperparameters 
of PSO are chosen as the dimension of 6 representing the six 
parameters to be optimized: 𝑅𝑅0, 𝑅𝑅1, 𝑅𝑅2, 𝐶𝐶1, 𝐶𝐶𝐶𝐶𝐶𝐶 and 𝛼𝛼3, 
acceleration factor =0.1, minimum inertia weight 0.5, 
maximum inertia weight =1, population size =50 and number 
of generations=500. The parameters are optimized using (7) 
for each 10% decay between 0 and 100% SOC inclusive 
storing 11 values for which parameters are linearly 
interpolated between input points. A comparison of the output 
voltages from the FOM and IOM with the experimental 
terminal voltage in the time domain is given in Fig. 6 where 
the zoomed view clearly shows that the FOM mimics the 
experimental voltage better than the IOM. 

 
Fig. 6. Comparison of the proposed FOM, IOM and experimental 
terminal voltages of the LFP battery 

4.2 Step 2 of the framework: Nonlinear observer results  

This subsection implements the second step of the FO 
framework discussed in Section 3 that involves the nonlinear 
observer design. The initial condition of the SOC of the LFP 
battery is 70% and the that of the FO nonlinear estimator is 
60%. An asymmetric charging discharging current profile as 
in Fig. 5 is fed as input to the battery and the estimator. The 
actual SOC is obtained by Coulomb counting through high 

fidelity measurements of the input current which are integrated 
with respect to time. Figure 7 shows that the estimated SOC 
despite being initialized from a different value, converges 
effectively to the actual SOC obtained from the battery 
experiment, thus, successfully estimating it. The steady state 
error of 0.6% is obtained between the experimental and 
simulated results.  

 
Fig. 7 Actual and estimated SOC in charging- discharging mode of 
the LFP battery 

The driving speed profile of an EV is transformed to a demand 
power profile which in turn is changed into current by an 
energy management module to be fed to the battery. For 
comparison with existing literature, derivation of existing 
FOMs of LFP in (Rao et al., 2021) is not validated 
experimentally and the estimation technique being a low gain 
linear observer may not guarantee convergence. In our 
proposed work where we take care of nonlinear dependencies 
of parameters versus SOC, we obtain an error of 0.6% between 
the experimental and estimated results. The error is less than 
the 0.8% and 0.91% errors obtained in the FO approaches in 
(Li et al., 2023 and Wei et al., 2022), respectively. Thus, our 
proposed method being an SOC dependent model can closely 
relate to the physical system in a practical scenario and provide 
improved estimation results with faster convergence. 

Acknowledgement: M. Borah in this work is supported by 
Fulbright fellowship. 

5.  CONCLUSIONS 

Efficient operation of an EV depends on high reliability of 
accurate estimation of SOC which in turn depends on the 
accurate modelling that closely captures the underlying energy 
storage dynamics. This paper presents a two-step framework 
of fractional order dynamics applied to SOC estimation of  
LiFePO4 batteries, the first being the proposal of a FO model 
of the battery where each circuit element in addition to the FO 
operator has nonlinear functionalities dependent on SOC. 
Practically, the FO parameter, 𝛼𝛼 captures the dynamics of the 
non-integral relationships of voltage and current in the low 
frequency region and thereby provides an improved 
representation of the battery solid phase diffusion dynamics as 
the charge-discharge cylces progress. The second step of the 
framework presents the design of the nonlinear observer in the 
FO sense to estimate the SOC. The gain matrix is selected such 
that the error dynamics satisfy the fractional-order Lyapunov 
stability analysis and converge to zero. In practical scenarios, 
the proposed nonlinear fractional-order dynamical framework 
for precise estimation of SOC can be applied to attain an 
improved, sustainable, resilient, and efficient battery 
management system in smart cities applications, provide exact 
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driving range in electric vehicles, reduce maintenance cost and 
safety risks, enable fault diagnosis, and save energy.  

The limitation of the proposed model is that the FO operator 
captures the dynamics in the low frequency region of the 
battery Nyquist curve. The future scope of this work is to use 
the FO operator as a function of SOC to model and understand 
the dynamics in the mid frequency region as well. Another 
direction of future scope is to study the FOM of the battery 
under the effects of hysteresis and temperature. 
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