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Abstract: Model parameter estimation is an important subject in control engineering, including
the field of battery management. Input excitation optimization has become an emerging topic
lately to improve the accuracy of estimation. Traditional optimization approach suffers from
a fundamental issue in parameter uncertainty, as the target parameters for estimation, often
needed for computing the optimization objective and constraints, are intrinsically unknown.
In this study, we introduce a non-dimensional approach to optimize excitations for estimating
the health-related Li-ion battery electrochemical parameters. Guided by the Buckingham 7
theorem, we derived a control-oriented non-dimensional battery model, excluding uncertain
target parameters from the problem formulation. As a result, the optimization problem can be
solved without any prior knowledge of target parameters. The applicable control input sequence
can be recovered by rescaling the obtained non-dimensional sequence with the best available
knowledge of the parameters. Furthermore, the proposed method reveals the fundamental impact
of the unknown parameters on the solution of input optimization. In light of this finding, we
propose two iterative excitation optimization strategies, which both significantly improve the
robustness and reduce the complexity of the optimization problem. The proposed method can

be generalized to solve general optimal control problems for a broad class of systems.
Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

Model-based optimization, control, and diagnostics are
ubiquitous in engineering, and the effectiveness of these
practice heavily relies on the accuracy of the model and
model parameters. For example, in Li-ion battery man-
agement, parameter estimation is crucial for ensuring the
safety, efficiency, and longevity of the battery systems (Lin
et al. (2019)). The importance of parameter estimation has
motivated the research on optimal input excitation design
for Li-ion batteries (Forman et al. (2012)), as the quality of
excitation has major impact on estimation accuracy (Lin
et al. (2019)).

Early works in this area focused on excitation design with
imposed patterns, such as sinusoidal (Song et al. (2018)),
pulse, and other empirical profiles (Park et al. (2018)).
Specifically, the parameters of these patterns, e.g. magni-
tude and frequency, were optimized to maximize the Fisher
information (FI) of the target parameters—a metric for
quantifying the information content of the output about
the parameters (Lehmann and Casella (2006)). Models
employed in these studies range from simple equivalent
circuit models (Rothenberger et al. (2015)) to electro-
chemical models (Park et al. (2018)). More recent works
have explored the direct optimization of input sequences
for estimating battery electrochemical parameters, with
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the goal of finding the ultimate optimal profile with no
imposed pattern (Lai et al. (2020a); Pozzi et al. (2018)),
enabled by the efficient analytic sensitivity computation
(Lai et al. (2020Db)).

These existing studies, while showing the effectiveness of
input excitation in improving estimation accuracy, have
revealed a fundamental obstacle in excitation design: the
optimal excitation often strongly depends on a priori un-
known system parameters. Since the purpose of excitation
is to enable the estimation of parameters, their exact
values are intrinsically unknown at the time of design.
Uncertainties in parameters can jeopardize the optimality
and effectiveness of the generated excitation when applied
to parameter estimation. Recent works have attempted to
derive a closed-loop control policy using Reinforcement
Learning for input generation based on state feedback
to improve the robustness of the solution to parameter
uncertainty (Huang et al. (2023)).

In this work, we propose a more general non-dimensional
approach for battery modeling and control, which can
be applied to characterize and mitigate parameter uncer-
tainty in excitation optimization. By applying the Buck-
ingham 7 theorem (Buckingham (1914)), we reformu-
late the system model and information objective into
dimensionless forms in modulo similarity with respect
to the unknown parameters. As a result, the optimal
control problem is non-dimensional and can be solved
without prior knowledge of uncertain parameters. The
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non-dimensionalization similarity transformation is then
inverted by scaling using the best available knowledge
of parameters. The non-dimensional approach reveals the
essence of optimization under different parameter values,
i.e. the parameter values (only) affect the time horizon
of the non-dimensional optimization. This insight gives
rise to 2 new iterative optimization schemes demonstrated
in later sections of the paper, including (1) optimization
using a pre-solved library of dimensionless excitations with
a range of time horizons, and (2) optimization using a
single dimensionless sequence. Both schemes work by first
scaling the solution of the non-dimensional optimization
problem with the best knowledge of the parameters, ap-
plying the obtained input sequence to generate the data
for estimation, rescaling based on the estimation results
and iterating the process. The advantages of the non-
dimensional approach are twofold. First, it renders ro-
bustness to parameter uncertainty through the iteration
process, where the input sequence can be updated with
improved knowledge of parameters and will converge along
with the parameter estimates. The updating of the se-
quence during iteration only involves simple scaling, which
can be easily performed and are much more feasible and
convenient than re-solving the optimization problem. Sec-
ond, the proposed approach also facilitates the procedure
of solving the optimization problem. This is because the
problem is now solved independent of parameter values,
which could affect the performance of the algorithm and
often requires tuning to obtain the true optimum. Sim-
ulation results on estimating key battery health-related
parameters are provided to demonstrate the capability of
the proposed approach to significantly improve estimation
accuracy, even with substantial uncertainty in parameters
and measurements. Moreover, the derived non-dimensional
approach can potentially be applied to a wide range of
general optimization problems, e.g. battery charging con-
trol, balancing control, and thermal management, which
are usually subject to parameter uncertainty. While non-
dimensional analysis has traditionally been used for bat-
tery performance analysis and design (Ayerbe et al. (2021);
Couto et al. (2023)), to the best of our knowledge, this
research is the first to apply a dimensionless similarity
approach to battery system estimation and control.

2. CONVENTIONAL INPUT OPTIMIZATION
METHOD WITH DIMENSIONS

This section examines the conventional excitation opti-
mization methodology for parameter estimation, in the
context of battery health-related parameters. We will first
introduce the battery model used for control and opti-
mization, followed by the parameter sensitivity dynamics
related to the input design objective, and finally the con-
ventional problem formulation and method of solution.

2.1 Battery Model

We employ the widely used single particle model with
electrolyte dynamics (SPMe) in this research for its good
balance of fidelity and complexity (Moura (2016)). This
model simplifies the full-order first-principle Doyle-Fuller-
Newman model by assuming a uniform exchange current
density (of the intercalation reaction) and molar ion flux

in each electrode. As a result, a single spherical particle
can be used to capture the Li-ion solid-phase diffusion at
each electrode, which is the most important dynamics of
the model. Specifically, we can describe the Li-ion diffusion
in an electrode particle in spherical coordinates based on
Fick’s second law, as shown in (1), along with its boundary
conditions in (2),

acs i 8265 i 2 605 i
L —D. . ) = 5 1
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In these equations, cs represents the Li-ion concentration
in solid particles, D, denotes the solid-phase diffusion
coefficient, R, is the particle radius, I refers to the battery
input current (positive for discharging), s is the active
material volume fraction, and A and é denote the electrode
area and thickness. The subscript ¢ indicates the negative
electrode (anode) when ¢ = n and positive electrode
(cathode) when ¢ = p. The + sign in (2) takes + for the
cathode and — for the anode.

By solving PDE (1) with boundary conditions (2), we
can obtain the Li-ion concentration at the surface of the
particle, cg, i.e. ¢s at ¥ = R, which is a critical state of the
model. Specifically, we apply Laplace transform to derive
a transfer function for c,., which can be conveniently used
for control purpose subsequently. The obtained transfer
function is transcendental, and we further use Padé ap-
proximation to simplify it to a rational function by mo-
ment matching (Lai et al. (2020b)),

N TR} ;s* + 420D, ;R2 ;s + 3465D2;  I(s)
Coeii(8) s(RT,s® + 189D, ,R? ;s + 3465D2 ) Fe, , A0,
(3)

The output of the SPMe model is the battery voltage
V', which is governed by four terms, as shown in (4).
These terms are the open circuit potential (U;), which is
a nonlinear function of c,. ;, the electrolyte potential ¢, ;
associated with the electrolyte Li-ion concentration c ;,
the overpotential 7; at the interface of the solid particle
and electrolyte, which drives the ionic (de)intercalation
reaction, and the lumped Ohmic resistance R;.

V = (UP(CSE,Z)) - Un(csem,)) + (¢e,p(ce7p) — ¢6,n(ce,n)>
+ (771’(056;177 Cexp) - nn(cse,na Cem)) — IR, ( )
4

Details about the modeling of ¢, and 7 are skipped here
due to page limit, and can be found in (Lai et al. (2020b)).

2.2 Input Design Problem Formulation

A popular objective for input design is to maximize
the Fisher Information (FI) of the data (Lehmann and
Casella (2006)), which represents the information content
(likelihood function) about the target parameter(s) to be
estimated. This objective has been commonly used in
battery research community for evaluating and optimizing
the current excitation (Park et al. (2018); Lai et al
(2021)).

Suppose the goal is to estimate a target parameter set
6 = [01,05,...,0,,], using a discrete sequence of system out-
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puts Y, o) = [5(t2). y(t2), - y(tn)] generated by an
input sequence wp, ¢y = [u(t1),u(t2),...,u(tn)]. Under
additive white Gaussian output noises, the (normalized)
FI of the target parameter(s) is
N
1 = T /5
Fineo(0) = — > (Se(tr)) (Se(tr) ()
0)= 5 3 (Sott)” (o)

in which 05 represents the variance of the measurement
noises in y, and Sp(tx) is the 1 x m normalized sensitivity
(vector) of y(tx) to 0, with each component

G Iy (tr)
So. (tr) =0, - . 6
0,(tk) = 0; a0, (6)
For univariate estimation scenarios (m = 1), the FI matrix
reduces to a scalar. For joint estimation of multiple param-
eters (m > 1), Flis an mxm matrix. The excitation design
problem can be formulated as maximizing the determinant
(or other metrics, e.g. trace or smallest eigenvalue) of the
FI matrix,

—det Fingo (6). (7)

Evaluation of the FI objective requires computation of
the sensitivity a—yg’c, which can be performed based on the
underlying system model. In the context of battery param-
eter estimation, y is the measured terminal voltage V', u is
the input current I, and 6 = [0, 03], where 61 = €, is the
cathode active material volume fraction, and 6y = D,
is the cathode solid phase lithium diffusion coefficient.
These two parameters are selected for estimation here
because they are the common targets in literature for two
reasons. First, they have important physical significance
and are associated with critical battery status. Specifically,
€5 is directly related to battery capacity and hence state
of health (SOH), and D, governs the diffusion dynamics
which affects both SOH and state of power (SOP). Second,
they are the only parameters in the diffusion equation (1)
that are likely to vary significantly from battery to battery
and over battery lifetime, and hence prone to uncertainty.

The sensitivity of the output voltage V to €5 can be
calculated by taking the partial derivative of (4) to e5 as

ov. . 0On on oU OCse
Ocs (t>_855 (3056 8cse) Ocs (®). (8)

In (8), the first three terms on the right side are non-
dynamic and can be easily computed based on the func-
tional form of n and U. The final term %%S;(t) represents
the sensitivity of 5 with respect to the diffusion state cse,
which varies dynamically over time and thus complicates
the sensitivity calculation. To facilitate computation, we
utilize the derived transfer function for ¢, in (3). Specifi-
cally, by taking the partial derivative of (3) to €5, we obtain
the sensitivity transfer function (STF) for e,

OcCse ) TRYs? + 420D R?s + 3465D? I(s) )
9e, ¥ = S(Ris? 1 189D, R2s + 3465D2)  Fe2ds"
The derived STF can be readily implemented in the time-
domain, enabling the efficient computation of sensitivity
and FI during optimization, as demonstrated in prior
research (Lai et al. (2020a, 2021); Huang et al. (2023)).
Similarly, the sensitivity of Ds can be computed as,

ov - 87} ou 8056
oD, ) = (6056 + Bcse> “ap, 1 (10)

with the corresponding STF
OCse (s) = 903R%s% + 41580D4 R%s + 800415D? R%1(s)
0D, (R3s2 +189D,R2s + 3465D2)2  Fe A5’
(11)

Remark: as mentioned previously, this conventional prob-
lem formulation of input optimization faces a fundamental
limitation, i.e. the unknown target parameters 8 appear in
the design objective and present uncertainty. Specifically
in the case here, both ¢, and D, appear in their STFs
in (9) and (11), and hence eventually show up in the
design objective FI, which is why Fi.5 is denoted as
dependent on € in (7). Consequently, the exact solution
of input optimization requires accurate knowledge of the
parameters, which are intrinsically unknown as they are
the target of estimation. Examples will be provided in a
later section to show that imprecise a priori values of the
target parameters assumed to perform the optimization
could significantly affect the optimality and effectivenss of
the solution. This limitation of the conventional problem
formulation motivated us to explore a new approach that
does not require precise knowledge of parameters.

3. NON-DIMENSIONAL FORMULATION OF INPUT
OPTIMIZATION

As a powerful technique for model reduction and simpli-
fication, nondimensionalization has been extensively em-
ployed in engineering design and development. According
to the Buckingham 7 theorem, systems governed by di-
mensional physical parameters can be represented with
a smaller set of parameters, some (or all) of which are
dimensionless. This non-dimensionalization process sim-
plifies the model and reveals the influence of physical
parameters on performance. In this study, we apply non-
dimensional analysis to model-based control, specifically
the input excitation optimization problem. It will be shown
that by non-dimensionalizing the input and time, the re-
sulting system dynamics will be free from any physical
dimensional parameters. As a result, there is no need to
know the values of the target parameters for optimization.

The process of the proposed non-dimensional approach
is outlined as follows. We examine the Li-ion diffusion
dynamics of the cathode solid particle in (1)-(2), which
contains both target parameters of interest. By re-defining
i Ds’pt R? r
RZ, ’ D, R,

-~ _  Gsp
Cs,p - b)
Cs,pmax

~n
w
i1

I = I
€s,pDs.p

B ApdpFes pCs pmaxDs,p

(12)

a non-dimensional diffusion equation and boundary condi-
tions can be derived as

06y, %6, 200,
P P 25, 1
of o 7 oF (13)
9é,., 0¢, .
rl o _g, x| _7 14
OF |jmg  OF |y (0

Then, by applying Padé approximation, the transfer func-
tion of the non-dimensional model can be obtained as

o 752 4+ 4205 + 3465 -
~se s) = 5 I 5) = s(s S . I ’ .
Esep(3) = G(3)I(3) 5(32 + 1893 + 3465) )

(15)
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It is worth noting that the non-dimensional transfer func-
tion does not contain any battery parameters, but it is
still implicitly related to the parameters through I and s
according to (12). Therefore, we can use the chain rule to
derive the parameter sensitivities for the non-dimensional
system model as

OCse.p

Besy (3)=G(3)

OCsep /- - 0I(3) O0G(5) 905 -, _
ap,, S = ap, T 755 ap,, )
Then, according to the mapping in (12), we can compute
8f:_11~ of 1 - 03 _

" 0D, Dy, " 0Ds, Dsp
(17)
By plugging (17) to (16), we can obtain the (normalized)
non-dimensional sensitivities of the two target parameters

(16)

025 p €s,p
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S et A R T e v RGN
0se 90352 + 415805 + 800415 -
Dy, 5) = — I(3).
s»" gD, ) FZ+ 1805 +3a65)7 1)
(19)

It is interesting to see that the reformulated nondimen-
sional model in (15) and parameter sensitivities in (18) and
(19) can now be computed without any original physical
parameters. Therefore, the input optimization problem
with the nondimensional FI as the objective can be solved
independent of parameters, as

min  —det Fipyg. (20)
Optimization of battery current under the new formu-
lzit{on Yv1~ll give~a~non—dimensiona1 sequence Iz 7
[I(t1),1I(t2),....,I1(tn)]. Tt is then scaled to obtain the
sequence for the original dimensional physical system
Iy, in) = U(t1),I(t2),...,1(tn)] by inverting the map-

ping between I and I, and ¢ and # in (12) as
2

EspDsp 7 Bsp -

I(tk) = o ](Dsmtk)’
which can be applied to the battery to generate the
data for estimation. The a priori knowledge of the target
parameters €5, and D; ;, are needed for scaling the current
magnitude and time. The main advantage of the new
non-dimensional formulation is that, even though the a
priori knowledge of parameters is still needed in the
final step of scaling, the optimization itself is performed
free of parameters and their uncertainty. Therefore, we
can simply pre-solve the non-dimensional optimization
problem to obtain the dimensionless sequence. And every
time when a subject (e.g. battery) needs to be estimated,
we do not need to repeat the computationally intensive
optimization, but simply scale the pre-designed sequence
based on the a priori knowledge of parameters. Moreover,
the new non-dimensional formulation also reveals the
fundamental impact of parameters on the structure of the
optimal input sequence. Specifically, if a parameter only
affects the scaling of the input magnitude (e.g. &5, in
this case), the optimal sequence will just be proportional
in magnitude under different parameter values; when the

(21)

parameter also affects the scaling of time (e.g. D ,), the
time horizon ¢ of non-dimensional optimization will be
proportional with the parameter value if we want to keep
the time horizon ¢y of the original dimensional sequence
the same.

Based on the above insights, we propose two iterative
excitation optimization and parameter estimation schemes
to counter the impact of parameter uncertainty, as illus-
trated in Alg. 1. Scheme 1 applies to the scenario when
it is desired to design an input sequence of a fixed time
horizon t};. In this case, we can optimize beforehand a

library of non-dimensional input sequences {ﬁfil,. ~;£N,i]}

under a range of ty by solving (20). Before performing
experiment for a specific subject, we first determine the
non-dimensional time horizon t}; based on t};, a priori

knowledge of the parameter 97, and the time scaling rela-

tionship, e.g. th = %t}‘v in the case of D;, estimation.
2

We then select from library a sequence w7, with

tn equal (or closest) to %, and convert it to Ut tn]
based on the scaling relationship, e.g. (21). The obtained
dimensional input sequence wu, . ¢,] Will then be applied
to perform experiment and generate the output Ytr,... tn]
which will be use to estimate (update) 8. The above
process is repeated until the estimate converges. Scheme
2 further simplifies the procedure by only using a single
non-dimensional sequence, and applies to the scenarios
when the requirement on experiment time horizon is not
strict. In summary, the key idea behind the proposed new
approach is to schedule a series of sequential experiments,
during which the input sequence is adapted based on
the estimation results (by simple and efficient scaling)
after each experiment run. Eventually, the sequence will
converge to the true optimum along with the parameter
estimates.

Algorithm 1 Non-dimensional approach of iterative ex-
citation optimization and parameter estimation

Input: a priori knowledge 9_, a library of sequences
{ﬁffl EN.]} pre-optimized under a range of ¢y and desired

time horizon ¢, (Scheme 1), a single @, 7,; (Scheme 2)

Output: estimate 0

1: 06

2: repeat

3: if Scheme 1 then .

4: ty < ti by scaling using 6;

5: choose w7, € {’af{l;--wai]} with tx = t4;

6: Uty tn] < Uiy ] by scaling using @, e.g.
(21).

7 else if Scheme 2 then .

8: Wiy, in] ’ljl,[{l_’_”ny] by scaling using 6, e.g.
(21).

9: end if

10: Apply Uty tN] to generate Yty ot

11: 0« Uity tn]s Yy, ty] (eStimation).

12: until 6 converges
13: return 6
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Fig. 1. Current optimization result for e, estimation
using non-dimensional approach: (a) optimized di-
mensionless sequence, (b) resultant (nondimensional)

cathode SOC
4. VALIDATION OF RESULTS

In this section, we demonstrate the effectiveness of the
proposed non-dimensional input excitation optimization
approach in simulation. The results are presented for two
cases of estimation: (1) single-variate parameter estima-
tion of €, ,, and (2) joint estimation of both ¢, , and Ds ,,.

During validation, the optimized dimensionless sequence is
initially scaled using a priori é*, and applied to an SPMe
model to generate the voltage data for estimation. It is
noted that 6~ deviates 50% from the true value (used in
the simulation model) to emulate the uncertainty in input
optimization, and Gaussian noise with both a mean and a
standard deviation of 0.01 V is added to the voltage data to
emulate the measurement uncertainty (bias and variance).
For Scheme 1, i.e. fixed time horizon experiment, the
horizon is set as t = 1800 s.

4.1 Single-variate Estimation of €

The optimized non-dimensional sequence (%) for e,
estimation is shown in Fig. 1. It is important to note that
according to (12) e, 5, is not involved in the scaling of time
t. Therefore, the update of é; ;, does not require re-scaling
the sequence in time, but only in the current magnitude
I, and hence the two schemes are identical.

As shown in Fig. 1(a), the dimensionless excitation se-
quence can be divided into three phases, namely the
constant-current charging phase with maximum current,
the reduced-current charging phase until the battery state
of charge (SOC, which is defined based on ¢,.) reaches 0.78
(where the slope of the open circuit voltage curve takes
the peak), and finally an SOC-sustaining phase in which
the current drops to zero. The features of the excitation
pattern is identical to the previous results using the con-
ventional dimensional approach, which can be explained
by correlating to the battery physics governing the e,
sensitivity (Lai et al. (2020a)).

The iterative estimation results are presented in Table 1.
It can be observed that the first iteration using the current
sequence scaled with 50% initial error in &, , yields an esti-

104 Optimized dimensionless input

= "“u””' ’ ) Hw [

ol W \‘ "

S \H‘ | ‘

: _M‘ \ 1 L
1.6 18

Fig. 2. Optimized dimensionless sequence for ¢, ;, and D;

joint estimation with £ = 1.8

u\

l i

\HH

.‘IU u‘_«
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mation error of 6.6%, showing the significant impact of pa-
rameter uncertainty. The errors over subsequent iterations
converge to a bound within 3% of the true value, which
is attributed to the voltage bias and variance (Fogelquist
et al. (2023)). Meanwhile, as the estimates improve, the
FI of the re-scaled dimensional sequence also improves
substantially from 26.6 V2 to around 150 V2.

4.2 Joint Estimation of €5, and Ds

Joint estimation of €, ;, and D, ,, presents a more complete
and complicated case of estimation, as the goal is to
essentially estimate all governing parameters of the lithium
diffusion model. One optimized non-dimensional sequence
(with £ = 1.8) is shown in Fig. 2. According to (12), D;
affects the scaling of both time and current magnitude.
Therefore, we validate both iterative schemes described in
Alg. 1, with the results presented in Table 2 and 3.

It is seen that for both schemes, the estimation errors after
the first iteration are substantial, namely 7.4% and 7.3%
for 5,4, and —30.2% and —33.7% for D;, respectively,
which are mainly caused by the large uncertainty (50%) in
the a priori knowledge of the parameters. This again tes-
tifies the limitation of the conventional input optimization
method, which heavily relies on accurate initial guess that
is fundamentally impossible to obtain beforehand. The
impact of parameter uncertainty is especially prominent
on Dy ,, as it has a much lower voltage sensitivity than e, ,
(Lai et al. (2020b)). Over subsequent iterations, the esti-
mates of both parameters converge quickly and eventually
settle around 4% of the true values. Even after just 1 more
iteration, the error in D, , estimate drops significantly to
6% in Scheme 2. These results validate the effectiveness of
the proposed iterative input optimization and estimation
approach in reducing the impact of parameter uncertainty.
It is noted that the two schemes perform similarly in this
application. The main difference is that the (dimensional)
time horizon of Scheme 1 is maintained at 1800s, while
that of Scheme 2 varies over iteration. Since there is no
obvious difference in performance, Scheme 2 is preferred
in this case since only a single non-dimensional sequence
needs to be optimized beforehand.

5. CONCLUSION

In this paper, we proposed a non-dimensional approach
for optimizing battery excitation to estimate the health-
related parameters. Utilizing the Buckingham 7 theo-
rem, we derived a non-dimensional battery electrochemical
model tailored for control design. The resulting dimen-
sionless model and objective function do not contain any
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Table 1. Single-variate iterative estimation result of €,

Iterations 0 1 2 3 4 5 6 7 8
Relative error of 5, (%)  50.00 6.66 4.42 3.24 2.76 2.60 2.70 2.64 2.62
FI of €5, (V2) 26.63 33.78 78.99 124.09 146.86 154.90 149.85 152.87 -

Table 2. Joint estimation results of €, , and D; , using Scheme 1

Iterations 0 1 2 3 4 5 6 7 8 9
Relative error of €5 p (%) 50.00 7.40 4.60 3.80 3.58 3.36 3.54 3.56 3.64 3.8
Relative error of Ds , (%) -50.00 -30.28 -9.63 -1.94 -5.34 3.58 -3.13 -2.79 -4.38 -4.13

in (—) 2.70 2.35 1.97 1.84 1.90 1.74 1.86 1.85 1.88 -

Table 3. Joint estimation results of €, ,, and Dj ;, using Scheme 2

Iterations 0 1 2 3 4 5 6 7 3 9
Relative error of €5, (%)  50.00 7.30 414 346 348 3.38 344 326 346  3.46
Relative error of Ds (%) -50.00 -33.68 -6.18 -4.13 -3.50 -4.25 -3.71 -4.25 -3.52 -4.36

tn (s) 1200 1346 1695 1729 1740 1727 1736 1727 1739 -

unknown target parameters, thus addressing the intrin-
sic limitation of the traditional approach, which needs
good a priori knowledge of the parameters beforehand.
Specifically, the new problem formulation would allow the
optimization to be performed without the parameters, and
only requires a simple scaling step to convert the result
to the applicable dimensional sequence. Based on this
insight, we proposed two iterative excitation optimization
and parameter estimation schemes. Simulation validation
has been performed for both single-variate and joint esti-
mation of the electrode active material fraction €, and
diffusion coefficient D, j, which are critical parameters
related to battery health and governing the key battery
diffusion dynamics. It is shown that when subject to 50%
initial uncertainty in parameters along with measurement
noises, the new approach achieves final estimation errors
of around 4%, compared to over 30% for the conventional
method. The results demonstrate the effectiveness of the
non-dimensional approach in addressing the parameter
uncertainty for input design. It is noted that the proposed
approach could be easily generalized to the broad class
of parameter-affine systems and general control problems,
which is a focus of our ongoing work.
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