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Abstract: This paper proposes a capture strategy for a team of pursuers to capture a fast
evader with uncertain dynamics in a 3D reach avoid game. The strategy involves coordinating
the agents motion to spread out and cut off all possible routes to the evader’s target. These
routes are obtained by estimating the evader’s reachable set using mixed monotone reachable
set theory. The reachable set is used to determine a capture surface, over which embedded
guidance reference points are provided for the pursuers through 2D coverage. The capture
strategy is demonstrated via simulation. Results suggest that capture performance improves
with an increase in pursuer team size. Further, the strategy is able to outperform a pure-pursuit
strategy when there is a sufficient number of pursuers to fully cover the obtained capture surface.
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1. INTRODUCTION

Reach-Avoid (RA) games are a form of differential game
in which an evader attempts to reach a target set while
avoiding other players. RA games have applications in
robotics, defense, and surveillance. Optimal strategies in
RA games are known to be found through the Hamilton-
Jacobi-Isaacs equation. However, these solutions suffer
from the curse of dimensionality and are intractable to
compute for games with increasing number of players.
We are interested in problems where multiple pursuers
coordinate their motion to engage a faster evader. Much
of the work related to RA games deals with pursuers
that are equal to or faster than the evader, however,
there is some work examining faster evaders. In Rivera-
Ortiz and Diaz-Mercado (2018) and Davydov et al. (2021),
2D RA games are formulated as control problems and
laws found that are superior to pure pursuit. In Garcia
and Bopardikar (2021) a control strategy is found for a
team of pursuers encircling a fast evader. Similarly, RA
game research considers pursuers and evaders in R2, but
recently there have been some results involving agents in
R3. Notably, Garcia et al. (2020) finds solutions to the HJI
equations for a small number of players. There is limited
work extending results from 2D to 3D because of the
added computational complexity of the optimal solutions.
Additionally, suboptimal solutions in 3D suffer from a
lack of unique solutions stemming from non-convexity

⋆ This material is based upon research supported by, or in part by,
the U.S. Office of Naval Research under awards number N00014-21-
1-2410 and N00014-21-1-2415.

Fig. 1. Capture strategy: An evader (red cone) attempts
to reach an unknown goal set (yellow region) within
the allotted time. A pursuer team (blue spheres) must
coordinate their motion over a capture surface (blue
plane) embedded in the evader’s reachable set (green
volume) which is estimated based on an uncertain
evader model and past trajectory information (orange
curve).

which results in an inability to reason about controller
performance.

In this work, we propose a capture strategy deployable
on an arbitrarily sized team of slow pursuers to attempt
capture a faster evader. By coordinating a team of slower
pursuers, a faster evader can be cut off from reaching its
target set (see Fig. 1). This work leverages principles from
coverage control and mixed monotone reachable set theory
to extend approaches presented in Khrenov et al. (2021)
from 2D engagements to 3D engagements. We propose a
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controller for a team of 2D embedded pursuers to defend
a surface as in Rivera-Ortiz et al. (2020) and capture a
3D ballistic evader with additive uncertainty. The contri-
butions of this work are threefold. We first extend prior
scalable strategies for capture in 2D to 3D engagements
and consider a ballistic evader model. We then provide
a mixed monotone decomposition function for a ballistic
trajectory with uncertainty arising from initial conditions
and bounds on expected aerodynamic forces. To account
for discontinuities that arise from uncertainty, we extend
coverage control approaches by using a virtual domain that
allows for coverage distributions to be achieved even when
real domain boundaries are discontinuous. The ability of
the strategy for a team of slow pursuers to achieve capture
against a fast evader is explored through Monte Carlo
simulation.

The structure of this paper is as follows. We present
the reach avoid game problem addressed in this work in
Section 2. In Section 3, we discuss the characterization of
the evader’s dynamics, and estimate its reachable set using
mixed monotone theory. We adapt Lloyd’s algorithm to
provide a capture strategy for the pursuers in Section 4. In
Section 5, we describe the validation of results through the
simulation framework. Concluding remarks are provided in
Section 6.

2. PROBLEM DESCRIPTION

We consider the reach-avoid (RA) variant of a pursuit-
evasion game, wherein a single evader attempts to travel
to (reach) a goal set while avoiding a team ofN > 1 coordi-
nated pursuers. Due to finite energy budget considerations,
we focus on finite-time games, where there exists an upper
bound for game conclusion T < ∞. If the evader reaches
its goal set before this time while avoiding capture, then
it wins. Otherwise, the pursuers win.

This work considers the specific case of embedded two-
dimensional pursuers and a three-dimensional aerody-
namic evader. The pursuer agent dynamics are assumed
to be of the single integrator form:

ẋi = ui (1)

where xi ∈ M ⊆ R2 is the ith agent’s planar posi-
tion embedded in R3, i = 1, . . . , N . The velocity of the
agents are bounded, such that ∥ui∥ ∈ [0, vp]. The evader’s
dynamics are unknown, but characterized by a series of
typical trajectories, and its maximum velocity is known
to be significantly greater than that of the pursuers, i.e.,
ve ≫ vp. The evader’s position is denoted xe ∈ R3.
Capture is defined as any member of the pursuer team
coming within ϵ (the capture radius) of the evader, such
that

d(xi, xe) ≤ ϵ

where d(p, q) is the Euclidean distance between the evader
position in R3 and the planar position of the pursuer
embedded in R3.

In two-dimensional RA games, one strategy is to form a
defense manifold that partitions the evader’s reachable set
into a set containing the evader and a set containing the
target. The pursuers coordinate defense along this parti-
tion until the end of the game as in Khrenov et al. (2021).
In 3D, the equivalent defense manifold is a 2D surface,

which the pursuers defend. To study this situation we
formulate this problem as an unpredictable aerodynamic
evader with an unknown trajectory, opposing a team of
embedded 2D pursers attempting to capture the evader.

3. EVADER MODELING AND REACHABLE SET
ESTIMATION

In this section we provide a reachable set estimation based
on a mixed monotone theory given an uncertain evader
model. We begin discussion with the model description of
the evader.

3.1 Ballistic Evader Model

In this differential game, the evader’s trajectory and dy-
namics are not explicitly known. However, the evader
can be characterized by an estimate of its dynamics and
bounds on its performance capabilities. Given a set of tra-
jectories that characterize the evader’s movement, bounds
on its reachable set can be estimated. We focus on a
ballistic evader with aerodynamic disturbances, for which
the following dynamics are appropriate[

ẋe

v̇e

]
=

[
ve

1/m(−T ||ve||ve +N(ve × w)−mg

]
(2)

where xe ∈ R3 denotes the coordinates of the evader,
ve ∈ R3 denotes the velocity of the of the evader, and
w ∈ R3 encodes the bounded uncertainty, modeled as spin,
with ⟨v, w⟩ = 0. The constants T and N are associated
with the drag and lift, respectively, and g = [0, 0, g]⊤.

The spin uncertainty can have drastic effects on the tra-
jectory of the evader. In the sequel, we will use mixed
monotonicity to reason about all the points that the evader
could reach given bounds on the uncertainty. This informa-
tion will subsequently be used to coordinate the pursuers’
motion as detailed in Section 4. Before describing the
reachable set estimation, we provide some preliminaries
on mixed monotonicity.

3.2 Mixed Monotone Reachable Set (MMRS) Computation

As described in Abate et al. (2021), we let (x, y) denote
the vector concatenation of x, y ∈ Rn such that (x, y) :=[
x⊤y⊤

]⊤ ∈ R2n. Let ⪯ denote the componentwise vector
order i.e., x ⪯ y if and only if xi ≤ yi for all i. Given
x, y ∈ Rn with x ⪯ y,

[x, y] = {z ∈ Rn|x ⪯ z and z ⪯ y} (3)

denotes the hyperrectangle defined by the endpoints x
and y. Let a = (x, y) ∈ R2n with x ⪯ y, we denote the
hyperrectangle formed by the first and last n components
of a as [[a]] i.e., [[a]] := [x, y].

Consider the system

ẋ = F (x,w) (4)

with state x ∈ X ⊂ Rn and time-varying disturbance input
w(t) ∈ W = [w w] ⊂ Rm where the vector field F is locally
Lipschitz continuous in its inputs, and that disturbance
signals w : R → W is piece-wise continuous. The set of
possible disturbances is a hyperrectangle
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provide a capture strategy for the pursuers in Section 4. In
Section 5, we describe the validation of results through the
simulation framework. Concluding remarks are provided in
Section 6.

2. PROBLEM DESCRIPTION

We consider the reach-avoid (RA) variant of a pursuit-
evasion game, wherein a single evader attempts to travel
to (reach) a goal set while avoiding a team ofN > 1 coordi-
nated pursuers. Due to finite energy budget considerations,
we focus on finite-time games, where there exists an upper
bound for game conclusion T < ∞. If the evader reaches
its goal set before this time while avoiding capture, then
it wins. Otherwise, the pursuers win.

This work considers the specific case of embedded two-
dimensional pursuers and a three-dimensional aerody-
namic evader. The pursuer agent dynamics are assumed
to be of the single integrator form:

ẋi = ui (1)

where xi ∈ M ⊆ R2 is the ith agent’s planar posi-
tion embedded in R3, i = 1, . . . , N . The velocity of the
agents are bounded, such that ∥ui∥ ∈ [0, vp]. The evader’s
dynamics are unknown, but characterized by a series of
typical trajectories, and its maximum velocity is known
to be significantly greater than that of the pursuers, i.e.,
ve ≫ vp. The evader’s position is denoted xe ∈ R3.
Capture is defined as any member of the pursuer team
coming within ϵ (the capture radius) of the evader, such
that

d(xi, xe) ≤ ϵ

where d(p, q) is the Euclidean distance between the evader
position in R3 and the planar position of the pursuer
embedded in R3.

In two-dimensional RA games, one strategy is to form a
defense manifold that partitions the evader’s reachable set
into a set containing the evader and a set containing the
target. The pursuers coordinate defense along this parti-
tion until the end of the game as in Khrenov et al. (2021).
In 3D, the equivalent defense manifold is a 2D surface,

which the pursuers defend. To study this situation we
formulate this problem as an unpredictable aerodynamic
evader with an unknown trajectory, opposing a team of
embedded 2D pursers attempting to capture the evader.

3. EVADER MODELING AND REACHABLE SET
ESTIMATION

In this section we provide a reachable set estimation based
on a mixed monotone theory given an uncertain evader
model. We begin discussion with the model description of
the evader.

3.1 Ballistic Evader Model

In this differential game, the evader’s trajectory and dy-
namics are not explicitly known. However, the evader
can be characterized by an estimate of its dynamics and
bounds on its performance capabilities. Given a set of tra-
jectories that characterize the evader’s movement, bounds
on its reachable set can be estimated. We focus on a
ballistic evader with aerodynamic disturbances, for which
the following dynamics are appropriate[

ẋe

v̇e

]
=

[
ve

1/m(−T ||ve||ve +N(ve × w)−mg

]
(2)

where xe ∈ R3 denotes the coordinates of the evader,
ve ∈ R3 denotes the velocity of the of the evader, and
w ∈ R3 encodes the bounded uncertainty, modeled as spin,
with ⟨v, w⟩ = 0. The constants T and N are associated
with the drag and lift, respectively, and g = [0, 0, g]⊤.

The spin uncertainty can have drastic effects on the tra-
jectory of the evader. In the sequel, we will use mixed
monotonicity to reason about all the points that the evader
could reach given bounds on the uncertainty. This informa-
tion will subsequently be used to coordinate the pursuers’
motion as detailed in Section 4. Before describing the
reachable set estimation, we provide some preliminaries
on mixed monotonicity.

3.2 Mixed Monotone Reachable Set (MMRS) Computation

As described in Abate et al. (2021), we let (x, y) denote
the vector concatenation of x, y ∈ Rn such that (x, y) :=[
x⊤y⊤

]⊤ ∈ R2n. Let ⪯ denote the componentwise vector
order i.e., x ⪯ y if and only if xi ≤ yi for all i. Given
x, y ∈ Rn with x ⪯ y,

[x, y] = {z ∈ Rn|x ⪯ z and z ⪯ y} (3)

denotes the hyperrectangle defined by the endpoints x
and y. Let a = (x, y) ∈ R2n with x ⪯ y, we denote the
hyperrectangle formed by the first and last n components
of a as [[a]] i.e., [[a]] := [x, y].

Consider the system

ẋ = F (x,w) (4)

with state x ∈ X ⊂ Rn and time-varying disturbance input
w(t) ∈ W = [w w] ⊂ Rm where the vector field F is locally
Lipschitz continuous in its inputs, and that disturbance
signals w : R → W is piece-wise continuous. The set of
possible disturbances is a hyperrectangle

Definition (Abate et al. (2021)): Given a locally Lipschitz
continuous function d : X ×W×X ×W → Rn the system
(4) is mixed-monotone with respect to d if

• For all x ∈ X and all w ∈ W we have d(x,w, x, w) =
F (x,w)

• For all i, j ∈ {1, ..., n}, with i ̸= j, we have
∂di

∂xj
(x,w, x̂, ŵ) ≥ 0 for all (x,w, x̂, ŵ) ∈ T such that

∂d
∂xj

exists

• For all i, j ∈ {1, ..., n}, we have ∂di

∂x̂j
(x,w, x̂, ŵ) ≤ 0

for all (x,w, x̂, ŵ) ∈ T such that ∂d
∂x̂j

exists

• For all i ∈ {1, ..., n} and all k ∈ {1, ...,m}, we have
∂di

∂wk
(x,w, x̂, ŵ) ≤ 0 ≤ ∂di

∂ŵk
(x,w, x̂, ŵ)

If (4) is mixed monotone with respect to d then d is called
a decomposition function for (4).
We can use a mixed monotone decomposition to over-
approximate the reachable set by constructing a determin-
istic embedding system. Given d,

ẋ
˙̂x


= E(x, x̂) =


d(x,w, x̂, w
d(x̂, w, x, w)


(5)

We refer to (5) as the embedding system relative to d and
E the embedding function relative to d. We denote ΦE(t, a)
the state of (5) reached at time t when beginning at state
a ∈ X × X at time 0.

Proposition (Abate et al. (2021)): Let (4) be mixed mono-
tone with respect to d and consider [[a]] ⊂ X × X . If
ΦE(τ, a) ∈ X × X for all 0 ≤ τ ≤ t, then RF (t; [[a]]) ⊆
[[ΦE(t, a)]].

This provides an efficient algorithm to overestimate the
evader’s reachable set for (4). We now have the machinery
to create a decomposition function for the particular
ballistic evader that we are considering

3.3 Ballistic Decomposition Function

We now provide a mixed monotone decomposition function
for (2). When performing mixed monotonicity analysis it
is helpful to rewrite the state variables as follows: x =
[x1, x2, x3]

⊤ and v = [x4, x5, x6]
⊤.

Proposition: The system in (2) is mixed monotone with
respect to d given by:

d(x,w, x̂, ŵ) =



x4

x5

x6

d1(x, x̂) + d2(x,w, x̂, ŵ) + d3(x,w, x̂, ŵ)

m
××
××




(6)

where

d1(x, x̂) =





−Tx4


x2
4 + dsqr(x5, x̂5) + dsqr(x6, x̂6)

if − Tx4 ≥ 0

−Tx4


x2
4 + dsqr(x̂5, x5) + dsqr(x̂6, x6)

if − Tx4 < 0

,

(7)

dsqr(x, x̂) =



x2 if x ≥ 0 and x ≥ −x̂
x̂2 if x ≤ 0 and x ≤ −x̂
xx̂ if x ≤ 0 ≤ x̂

, (8)

d2(x,w, x̂, ŵ) =


min {Nx5w3, Nx̂5w3, Nx5ŵ3, Nx̂5, ŵ3}
if x ≤ x̂ and w ≤ ŵ

max {Nx5w3, Nx̂5w3, Nx5ŵ3, Nx̂5, ŵ3}
if x > x̂ and w > ŵ

, (9)

and

d3(x,w, x̂, ŵ) =





min {−Nx6w2,−Nx̂6w2,
−Nx6ŵ2,−Nx̂6, ŵ2}
if x ≤ x̂ and w ≤ ŵ

max {−Nx6w2,−Nx̂6w2,
−Nx6ŵ2,−Nx̂6, ŵ2}
if x > x̂ and w > ŵ

. (10)

The remaining entries (lines 5 and 6) in (6) are found con-
tinuing the pattern shown above using the cross-product.
The decomposition function in 6 was computed using the
general theory posited in Abate (2022) Chapter 3, and
thus we omit a formal proof
The reachable set is computed by numerically integrating
the embedding function (5). This reachable set will be
used in the sequel to define the capture surface over which
pursuers coordinate their motion.

4. PURSUER COORDINATION AND CAPTURE
SURFACE

We now define the surface over which the pursuers attempt
to capture the evader. From 5, we have at all times t < T
a conservative estimate of forward reachable set E(t).
By the nature of the hyperrectangular initial conditions
and the mechanics of the MMRS, the reachable set over-
approximation is also a hyperrectangle. Because the evader
xe ∈ R3, we have E(t) ⊂ R3. Let us then define the
capture surface C(t) as the intersection of the evader’s RS
with the embedded subspace occupied by the pursuers,
i.e., C(t) = E(t)


M.

It was shown in Rivera-Ortiz et al. (2020) that a coordina-
tion strategy that allows for pursuers to persistently cover
the capture surfaces suffices to guarantee capture. Though
capture guarantees conditions are beyond the scope of the
presented work, we provide a coverage strategy in the
sequel, and reason about capture performance through
Monte Carlo simulations in Section 5.

4.1 Coverage Control

Coverage is a technique in multi-agent control in which a
group of agents attempts to spread out according to some
distribution over a region in space. Let xi ∈ M ⊆ R2 be
the position of the ith agent, i ∈ {1, ..., N} in the domain
of interest M. Define a subdomain S(t) ⊂ M, such that
agent i lies in the subdomain at time t if pi(t) ∈ S(t). Let
∂S(t) denote the boundary of the subdomain at time t and
let q(t) be differentiable for almost every point q ∈ ∂S. We
use the locational cost (Cortes et al. (2004)) as a metric
of coverage performance:

H(x(t), t) =
n

i=1



Vi(x(t),t)

∥xi(t)− q∥2 ϕ(q, t)dq (11)
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where ϕ : S(t)× [0,∞) → (0,∞) is a density function that
encodes the importance of the points in a subdomain. We
divide the domain into a Voronoi tessellation, given by

Vi(x, t) = {q ∈ S(t) | ∥xi − q∥ ≤ ∥xj − q∥ ∀j} (12)

In Du et al. (1999) and Iri et al. (1984) it is shown that

∂H

∂xi
=

∫

Vi

−2(q − xi)
⊤ϕ(q, t)dq (13)

We define the mass mi and center of mass ci of the ith

Voronoi cell Vi as

mi(x, t) =

∫

Vi

ϕ(q, t)dq (14)

ci(x, t) =

∫
Vi

qϕ(q, t)dq

mi
(15)

Thus (13) can be rewritten as

∂H

∂xi
= 2mi(xi − ci)

⊤ (16)

Where the critical points of (11) is

xi(t) = ci(x, t), i = 1, . . . , N. (17)

When (17) is satisfied, x = [x⊤
1 , . . . , x

⊤
N ]⊤ is a centroidal

Voronoi tessellation (CVT). Based on (16) the (scaled)
gradient descent motion for individual agents is given by

ẋi = −k(xi − ci) (18)

where k is a positive gain. This expression is known as
Lloyd’s algorithm.

4.2 Virtual Agents

By the properties of a mixed monotone system, the area of
the hyperrectangular RS shrinks monotonically, and thus
C(t) also shrinks monotonically. Because the dynamics of
the evader are largely ballistic, the reachable set shrinks
quickly at the outset of the trajectory, and stabilizes later
in the trajectory. For this reason, it is advantageous for
pursuer agents to continue playing, even if they fall outside
of C(t), as they may be able to reach C(t) before game
conclusion. Since even assuming that the pursuers begin
within the capture surface xp ∈ C(t), because ve ≫ vp,
there is no guarantee that they are fast enough to remain in
C(t) as it shrinks, we are not able to use the pursuer agents
positions as generators for the Voronoi tessellation needed
to compute Lloyd’s algorithm, as they may lie outside the
domain.

For this reason, we introduce virtual agents that always
lie strictly within the domain and that serve as guidance
reference points for the real pursuer agents. Let each
pursuer be assigned a virtual agent with position denoted
xvi ∈ M. The virtual agent has no maximum speed
limitations, and thus can always remain inside the capture
surface. We propose a new control law with the virtual
agents performing (a version of) Lloyd’s algorithm, and
the real pursuer agents moving toward the virtual agents
at maximum speed.

ẋi = vp
(xvi − xi)

∥xvi − xi∥
. (19)

Some considerations for the virtual agent dynamics are
discussed in the next subsection.

4.3 Virtual Domain

In discrete time, the reachable set shrinks discontinu-
ously, so even virtual agents performing coverage with
unbounded velocity may be outside C(t) from one time
step to the next. To mitigate this we consider coverage
over a static virtual domain D = [0, 1] × [0, 1]. Because
C(t) is always rectangular, we are able to find an invert-
ible mapping that relates the real and virtual domains,
Ft : C(t) → D. Incorporating this function Ft into the
control law we guarantee that the virtual agents always
stay in the reachable set. The dynamics for the virtual
agents are now as follows:

ẋvi = F−1
t+1(−k(Ft(xvi)− Ft(cvi))) (20)

5. SIMULATION RESULTS

To evaluate the 3D capture strategy, we performed sim-
ulated capture of a 3D evader with planar pursuers. A
dataset for real 3D ballistic trajectories were obtained us-
ing an experimental setup as follows. Unpredictable evader
trajectories were obtained by lunching a Styrofoam balls
from a toy ball launcher (Franklin Sports Youth Pitching
Machine). This launcher imparted unpredictable initial
velocity and spin (both in direction and magnitude). A
representative series of trajectories was recorded using a
Vicon motion capture system (Vantage V8). This data
was used to generate bounds on the initial velocity and
on the measured position and velocity for the reachable
set computation. The controller was then implemented in
MATLAB R2021B. Some representative trajectories from
the simulation are shown in Fig. 2. Note how the capture
surface decreases in area as the evader moves toward its
target. Also notice the importance of the virtual agents.
In Fig. 2b all agents are outside of the capture set C(t).
However, by the time the game progresses to Fig. 2c, the
agents are able to re-enter the capture set C(t) and capture
the agent.

As expected, increasing the number of agents improves the
probability of capture as the agents are able to coordinate
their targets to better cover the RS, despite their individ-
ual kinematic disadvantage to the evader. This is conveyed
by the capture statistics in Fig. 2d.

6. CONCLUSIONS

In this paper, we have presented a control strategy for a
team of 2D pursuers to capture a fast, 3D, ballistic evader.
This strategy leverages mixed monotone reachable set the-
ory to overestimate the reachable set of the evader and a
capture set within the subspace of the pursuers. The agents
then use coverage control over a virtual domain to attempt
to coordinate and capture the evader on the capture set.
The algorithm was then demonstrated via numerical sim-
ulation of pursuers’ motion to capture a real evader. These
results show that as the number of pursuers increases,
their probability of capture also increases. The coverage
control strategy is also compared to a controller in which
the pursuers perform pure pursuit toward the center of
the capture set (Fig. 2d). Of note, pure pursuit performs
better for low numbers of pursuers, but coverage performs
better with higher numbers of pursuers. We suspect that
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where ϕ : S(t)× [0,∞) → (0,∞) is a density function that
encodes the importance of the points in a subdomain. We
divide the domain into a Voronoi tessellation, given by

Vi(x, t) = {q ∈ S(t) | ∥xi − q∥ ≤ ∥xj − q∥ ∀j} (12)

In Du et al. (1999) and Iri et al. (1984) it is shown that

∂H

∂xi
=

∫

Vi

−2(q − xi)
⊤ϕ(q, t)dq (13)

We define the mass mi and center of mass ci of the ith

Voronoi cell Vi as

mi(x, t) =

∫

Vi

ϕ(q, t)dq (14)

ci(x, t) =

∫
Vi

qϕ(q, t)dq

mi
(15)

Thus (13) can be rewritten as

∂H

∂xi
= 2mi(xi − ci)

⊤ (16)

Where the critical points of (11) is

xi(t) = ci(x, t), i = 1, . . . , N. (17)

When (17) is satisfied, x = [x⊤
1 , . . . , x

⊤
N ]⊤ is a centroidal

Voronoi tessellation (CVT). Based on (16) the (scaled)
gradient descent motion for individual agents is given by

ẋi = −k(xi − ci) (18)

where k is a positive gain. This expression is known as
Lloyd’s algorithm.

4.2 Virtual Agents

By the properties of a mixed monotone system, the area of
the hyperrectangular RS shrinks monotonically, and thus
C(t) also shrinks monotonically. Because the dynamics of
the evader are largely ballistic, the reachable set shrinks
quickly at the outset of the trajectory, and stabilizes later
in the trajectory. For this reason, it is advantageous for
pursuer agents to continue playing, even if they fall outside
of C(t), as they may be able to reach C(t) before game
conclusion. Since even assuming that the pursuers begin
within the capture surface xp ∈ C(t), because ve ≫ vp,
there is no guarantee that they are fast enough to remain in
C(t) as it shrinks, we are not able to use the pursuer agents
positions as generators for the Voronoi tessellation needed
to compute Lloyd’s algorithm, as they may lie outside the
domain.

For this reason, we introduce virtual agents that always
lie strictly within the domain and that serve as guidance
reference points for the real pursuer agents. Let each
pursuer be assigned a virtual agent with position denoted
xvi ∈ M. The virtual agent has no maximum speed
limitations, and thus can always remain inside the capture
surface. We propose a new control law with the virtual
agents performing (a version of) Lloyd’s algorithm, and
the real pursuer agents moving toward the virtual agents
at maximum speed.

ẋi = vp
(xvi − xi)

∥xvi − xi∥
. (19)

Some considerations for the virtual agent dynamics are
discussed in the next subsection.

4.3 Virtual Domain

In discrete time, the reachable set shrinks discontinu-
ously, so even virtual agents performing coverage with
unbounded velocity may be outside C(t) from one time
step to the next. To mitigate this we consider coverage
over a static virtual domain D = [0, 1] × [0, 1]. Because
C(t) is always rectangular, we are able to find an invert-
ible mapping that relates the real and virtual domains,
Ft : C(t) → D. Incorporating this function Ft into the
control law we guarantee that the virtual agents always
stay in the reachable set. The dynamics for the virtual
agents are now as follows:

ẋvi = F−1
t+1(−k(Ft(xvi)− Ft(cvi))) (20)

5. SIMULATION RESULTS

To evaluate the 3D capture strategy, we performed sim-
ulated capture of a 3D evader with planar pursuers. A
dataset for real 3D ballistic trajectories were obtained us-
ing an experimental setup as follows. Unpredictable evader
trajectories were obtained by lunching a Styrofoam balls
from a toy ball launcher (Franklin Sports Youth Pitching
Machine). This launcher imparted unpredictable initial
velocity and spin (both in direction and magnitude). A
representative series of trajectories was recorded using a
Vicon motion capture system (Vantage V8). This data
was used to generate bounds on the initial velocity and
on the measured position and velocity for the reachable
set computation. The controller was then implemented in
MATLAB R2021B. Some representative trajectories from
the simulation are shown in Fig. 2. Note how the capture
surface decreases in area as the evader moves toward its
target. Also notice the importance of the virtual agents.
In Fig. 2b all agents are outside of the capture set C(t).
However, by the time the game progresses to Fig. 2c, the
agents are able to re-enter the capture set C(t) and capture
the agent.

As expected, increasing the number of agents improves the
probability of capture as the agents are able to coordinate
their targets to better cover the RS, despite their individ-
ual kinematic disadvantage to the evader. This is conveyed
by the capture statistics in Fig. 2d.

6. CONCLUSIONS

In this paper, we have presented a control strategy for a
team of 2D pursuers to capture a fast, 3D, ballistic evader.
This strategy leverages mixed monotone reachable set the-
ory to overestimate the reachable set of the evader and a
capture set within the subspace of the pursuers. The agents
then use coverage control over a virtual domain to attempt
to coordinate and capture the evader on the capture set.
The algorithm was then demonstrated via numerical sim-
ulation of pursuers’ motion to capture a real evader. These
results show that as the number of pursuers increases,
their probability of capture also increases. The coverage
control strategy is also compared to a controller in which
the pursuers perform pure pursuit toward the center of
the capture set (Fig. 2d). Of note, pure pursuit performs
better for low numbers of pursuers, but coverage performs
better with higher numbers of pursuers. We suspect that

(a) Initial time estimate (b) Coverage (midway)

(c) Capture (terminal time) (d) Capture Statistics

Fig. 2. (a)-(c) Three snapshots from a representative game. The evader (green cone) moves along its trajectory while the
pursuers (red circles) track the virtual pursuers (blue square) which perform coverage on the estimated reachable
set (black rectangle). (d) The probability of capturing the evader increases with the number of agents as they are
able to better cover the domain.

this is caused by the rate of contraction of the reachable
set. In cases with small numbers of agents, whichever
pursuers are nearest the eventual capture location are
the only ones with a chance of successful capture. The
pursuers adhering to pure pursuit go to the center of the
reachable set. However, the pursuers adhering to coverage
go to whichever Voronoi cell they were initially assigned,
which may be on the other side of the reachable set. With
more pursuers in the game, the coverage algorithm has
enough agents to match the initial rapid contraction of
the reachable set and actually perform coverage, resulting
in improved performance over pure pursuit. Future work
includes reasoning about the number of pursuers required
to perform capture using this strategy, reasoning about the
pursues’ regions of dominance, and analytically exploring
how evader decisions affect the reachable set in order to
explicitly account for time-variations to improve pursuer
tracking performance.
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