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Abstract: Targeted drug delivery via nanorobots has become an area of prominent research. However,
since such robots are microns in size (and in the future, nanometers in size), implementing control
laws to make sure the nanorobot does not deviate from a desired trajectory becomes exceedingly
difficult. Building upon the existing nonlinear dynamic models of a nanorobot, this work proposes
a data-driven method for optimal path planning and control of nanorobots. Specifically, the collision
avoidance strategy, Dynamic Window Approach (DWA) implemented with linear quadratic regulator
(LQR) control, is employed to simulate a randomly chosen nanorobot moving through the pulmonary
artery against blood flow. The nanorobot is simulated as though it is being guided from the initial site
to the target site via an induced magnetic field gradient generated by an MRI. It is shown that when
full-state feedback control is implemented for nanorobot control, the LQR controller is able to quickly

bring the nanorobot to desired states.
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1. INTRODUCTION

In recent medical advancements, targeted drug delivery via
nanorobots has become an area of prominent research (Hu et al.
(2020)). From developments in nanorobot design to propulsion
methods toward a target site, nanorobots are becoming a viable
option for many delicate surgical and other therapeutic proce-
dures, making the delivery of certain drugs efficient and sig-
nificantly safer than traditional medical techniques (Luo et al.
(2018); Li et al. (2017)).

Recent research in medical nanorobotics ranges from propul-
sion methods to nanorobot design for efficient delivery (Hu
et al. (2020)). As per Hu et al. (2020), propulsion methods
include, but are not limited to, the use of electric and magnetic
fields, light energy, ultrasound energy, and chemical energy. In
recent developments, biological fuel has been used as an ad-
ditional source of propulsion toward a target site. For instance,
Urso and Pumera (2022) utilizes DNA as a fuel source to propel
biorobots toward cancer cell-occupied target sites. The design
of nanorobots is also critical as the geometrical design can
dictate how efficiently the nanorobot can ’swim’ (Giri et al.
(2021)). For instance, Gao et al. (2014) utilizes magnetic helical
swimmers, which are directly fabricated from the helical xylem
vessels of various vascular plants. The rotation of the helical
swimmers, which is induced by an applied external magnetic
field, allows the nanorobots to propel toward the target site.
However, magnetic-driven nanorobots are mostly preferred as
this actuation enables long-range, fast, and precise actuation of
single or many robots in diverse bodily environments. Mean-
while, magnetic actuation has unique potential for medical ap-
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plications of microrobots inside nontransparent tissues at high
penetration depths (Sitti and Wiersma (2020)). Thus, this study
focuses on MRI-driven nanorobots.

One key factor in targeted drug delivery is path design and
existing path planning algorithms in robotics provide optimal
solutions to path designs. For instance, the A* search algo-
rithms attempt to traverse through a graph, calculate weights
and distances between each node, and determine which nodal
direction is optimal (least cost) to reach a target (Russell and
Norvig (2021); Yao et al. (2010)). In contrast, RRT (Petit and
Desbiens (2021)), RRT* (Adiyatov and Varol (2017)), and Dy-
namic Window Approach (DWA) (Fox et al. (1997); Sakai et al.
(2018)) algorithms are forms of collision avoidance policies.
Among these approaches, DWA is a physics-informed path
planner that computes a feasible path based on the robot’s
current state (Fox et al. (1997); Liu et al. (2021)) as it directly
takes into account the robot dynamics (position, velocity, accel-
eration, yaw angle, and yaw rate) and computes an optimal path.
Due to the microscopic nature of the nanorobot, considering
nanorobot dynamics is vital, and thus, DWA is ideal for our
study of micro/nano-robot control. Moreover, since such robots
are extremely small, integration of the path planning approach
with feedback control is necessary to ensure robust tracking
of the robot. Therefore, in this study, we propose integrating
DWA with a full-state feedback controller for motion planning
of MRI-driven nanorobots.

This paper introduces a new method for targeted drug delivery
using nanorobots, in which an optimal path can be config-
ured and followed along using DWA integrated with Linear
Quadratic Regulator (LQR). The research presented in this pa-
per is building upon the nonlinear dynamics of the nanorobots

2405-8963 Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2023.12.087



584 Prahlad Pandav et al. / IFAC PapersOnLine 56-3 (2023) 583-588

(Arcese et al. (2009)), based on which a linearized state equa-
tion has been derived using the Dynamic Mode Decomposition
with Control (DMDc) algorithm and then implemented into the
DWA algorithm integrated with LQR control. This approach
has been implemented in simulation, and the results demon-
strate that the controller can effectively track the nanorobot.

2. METHODS

The assumptions we made at the start of this research are as
follows:

e The nanorobot is spherical.
o The nanorobot will travel against blood flow.

e Blood compressibility is ignored (Thomas and Sumam
(2016)).

e Elasticity and deformation effects (Calandrini et al. (2018))
of the artery wall are ignored.

e Blood flow is laminar, steady, and irrotational in the pul-
monary artery with a freestream blood velocity of ue
(Gabe et al. (1969)).

o The nanorobot is assumed to be guided by an MRI towards
the target site via magnetic field gradients. The magnetic
field gradients are the control inputs in the system.

e Force exerted on the nanorobot due to external magnetic
field must be greater than the drag force the nanorobot
experiences, and thus must be accelerating.

2.1 Nanorobot System Dynamics

Equations of motion of the nanorobot can be derived by free
body diagram analysis (Arcese et al. (2009)), as shown in Fig. 1.

By free body diagram analysis, the drag force is given as

1
F, = —Ep(u,—uoo)ZACd (1)

where u, — i is the nanorobot’s relative velocity with respect
to the freestream blood velocity, A is the frontal area of the
nanorobot, and C; is the drag coefficient. In a laminar flow
regime with a large Reynold’s Number, the drag coefficient for
a spherical object is formulated as
24 6
Cy Re + = \/IE +0.4
where Re is the Reynold’s Number.

2

For the nanorobot to maintain its course toward a specified
target site, the force due to the external magnetic field must

Fig. 1. Free body diagram of the nanorobot in a fully-developed
laminar flow regime.

be greater than the drag force. The force due to the external
magnetic field is

Fo = toVu(M-V)- B 3)

where iy =4 -7 x 1077 T-m/A is the free space permeability,
Vyn 1s the magnetic core volume, M is the magnetization, and B
is the magnetic field generated by the MRI. The weight of the
nanorobot is: W, = (pr — pp)gV, where V is the volume of the
nanorobot and p, is the density of the nanorobot.

The equations of motion in the / and k directions (see Fig. 2)
can then be derived as (Arcese et al. (2009))

mi=Fq + Fn, )
mi=TF g+ Fp+Wa )

It should be noted that x and z are the projections on the unit
vectors i and &, respectively. Since the dynamics in both di-
rections are similar, the control law formulations for dynamics
in either direction would also be similar. Therefore, we focu§
on the nanorobot translation motion in the / direction. With &
direction dynamics negated, the following equation of motion
can be derived

(X — Ueo)?
1+ 0\/X — lhoo
Further information on nanorobot parameters a; and & [/sm™!]

can be found in the work by Arcese et al. (2009). The con-
trol input u is the the magnetic field gradient input u =

X = ay (X — o) + a2 (% — Ueo)* + a3 +asu (6)

||??|| [Tm~!]. Additionally, it is important to note that robot
parameters a; [ms’l], ay [m™!], and a3 [m’l] are functions of
the yaw angle 6.

The yaw (heading) angle is the angle of the nanorobot’s di-
rection of travel with respect to the target site. As the DWA
motion planner seeks to compute and generate smooth, curved
trajectories, it is imperative to consider the yaw dynamics due
to the yaw angle constantly changing along the robot’s path.

We set the states x; and x; to be the position and velocity of
the nanorobot in the 7 direction, and x3 and x4 to be the yaw
angle and yaw rate of the nanorobot. The yaw dynamics can be
derived by determining the sum of all moments acting on the
nanorobot about its start position (origin) and coupling it with
the resultant angular acceleration. Assuming the nanorobot’s
starting point is at the origin, the sum of all moments about
the origin is XMy = (F,, — F;)x,sin (x3). Coupling the sum of
all moments with the resultant angular acceleration, M = I 6,
the robot’s yaw dynamics can be derived. Note that x4 = 6 and

\

Target site

Fig. 2. Defined coordinate system with respect to a selected
blood vessel.
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1 is the robot’s moment of inertia. Therefore, the nonlinear state
space model is then formulated as

X1 = X2
X = fo(x) +i
X3 =x4 @)

X4 = %Xrl sin (X3)
y=[x x3]T
where F = F,, — F;. Note x; and x3 are measurable by
MRI tracking. Also, fa(xz) + i = ajxy +az (x% — 2Uoxp) +
ERY)
a3 % +aru — ajue + aqu.
2.2 Linearization of the Nanorobot System

For the nonlinear system shown in (7), traditional linearization
techniques (e.g., linearization via Taylor series) may lead to
poor control performance as the equilibrium points x, may
be unreachable or unstable regions. In this work, we propose
a data-driven approach—the Dynamic Mode Decomposition
with Control (DMDc) algorithm (Proctor et al. (2016))—to
nanorobot system linearization.

The DMD algorithm seeks to reduce the high dimensional-
ity of a nonlinear system and maps it to a linearized space
such that the linearized model, x(k + 1) = Ax(k), captures the
underlying dynamics of the system with high accuracy; this
is derived from multidimensional spatiotemporal timeseries
datasets. With DMDec, linear operators are computed by least
squares regression, which then allows for computing the state
and actuation matrices.

The datasets (i.e., the snapshots) contain the time history of
the state vector, X = [x,X2,x3,x4]7, which can be obtained
by numerically solving the set of stiff differential equations
in Eq. (7) with a sample time dr. The snapshots of the state
vector X; are then merged into a large, high dimensional matrix
as follows:

X=[X1,X,..Xm 1], and X' =[Xp,X3,..Xn], (8)

where X' € R™* is the concatenated dataset X € R"*4
shifted by one sample step and m is the number of snapshots ob-
tained. In addition, a large matrix ¥ comprised of MRI control
input measurements must also be determined. Similarly, Y =
[ur,uz,...;um—1]. It is worth mentioning that for this research,
control input constraints were imposed as [—#mqax, Umax|, Where
Upmay = 0.045 Tm ™!,

The state matrix A can thus be approximated as A = X'XT,
where X' denotes the Moore-Penrose pseudoinverse of X.
However, this computation is inefficient due to the high dimen-
sionality of X. Therefore, we compute the singular value de-
composition (SVD) of X and commit rank-rgyp truncation with
rsyp = 4. By rank-rgyp truncation, the high dimensionality of
X is reduced, which is essentially what the DMD algorithm
aims to do. Additionally, the control space Q must also be
truncated by a higher rank-pgsyp = 10. Therefore, a linearized,
data-driven based state equation can be written as

X
Y
where G = [A B] and Q = [X Y] (Proctor et al. (2016)).

If SVD of X’ and Q, with rank-rgyp and rank-psy p, truncations
are performed, the linearized state and control input mappings
can be rewritten as

X:AX+BT:¢X%:MBﬂ:]:GQ y=CX (9)

A=~ UOX'VE'0,0

B~UXVE 'O,

where terms with * and ~ are derived from computing the SVD
of X’ and Q, respectively, and U = [U; U,]".

(10)

Examining the DMD (Koopman) modes and eigenvalues of
A can provide insight into the behavior and stability of the
linearized system in (9). DMD modes depict the spatiotemporal
patterns within a dynamical system, with each mode comprised
of spatial and temporal patterns corresponding to each state.
Modal analysis can be performed by computing the DMD
modes P as

& =Xvr'0,0w (11)
where W is the eigenvector of the estimated state matrix (Proc-
tor et al. (2016)) .

2.3 Dynamic Window Approach

In this work, possible obstacles that are considered a nanorobot
might encounter include blood cells, tissues, and collisions
with blood vessel walls. It has been suggested that admissible
velocities can be determined by the objective function, which is
a function of the robot’s velocity, distance to the next nearest
obstacle, and progress towards its target (Fox et al. (1997)).
Based on these parameters, the DWA algorithm computes a
search space that allows the planner to increase or decrease the
robot’s velocity, as required, within the proximity of an obstacle
or target site. The admissible velocities, V,, of a given robot
within a dynamic window are provided as

Vo = {v,0|min(v < \/2-dist(v,0) -V, 0 <
V2 - dist(v,0) - @y},

where v and @ are the linear and angular velocities of the
robot along its trajectory, dist(v, ®) is the distance to the nearest
oncoming obstacle, and v, and @, are the accelerations required
for breakage (Fox et al. (1997)).

Within a certain time interval ¢ in the narrowed down search
space, the robot will travel with actual velocities v, and ®,.
Thus, the dynamic window can be represented as

Vi = {(v,®)| min(ve[v, +v-t],we[0, = @ -1])} (13)
By introducing boundary conditions to the search space, we

obtain a resulting search space V, Fox et al. (1997). Within V,
is a set of feasible velocities Vi, which can be expressed as

V, =V,NV,NV,.

12)

(14)

Finally, the optimal trajectory is computed by minimizing the
objective cost function, G(v, ®), which is minimized to deter-
mine optimal linear and angular velocities to the robot’s trajec-
tory. The objective function is given by

G(x2,x4) = o(a-heading(xy,x4)+

B - dist(x2,x4) + v velocity(xy,x4))
where a, B, and y are the weighted target, obstacle, and
velocity cost parameters, respectively, and heading(x;,x4) is
the instantaneous yaw angle with respect to the target heading.
With the above considerations, the next subsection explores

optimal motion planning of the nanorobot using DWA with
Linear Quadratic Regulator (LQR) controller application.

2.4 LOR-DWA Approach

s)

LQR control is integrated into the open source DWA algorithm
(Sakai et al. (2018)) to ensure the nanorobot system can operate
at minimal cost and stability. The following is the LQR cost
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function that minimizes the sum of all state errors and the
control input,

Jior = Z (X,{ OXy + u,{Ru)
k=0
where Q and R are the state and input cost weighted matrices,
respectively, and X and u are the DMD linearized state and
control input vectors of the nanorobot dynamic system. The
stabilizing solution S can be found by solving the discrete time
algebraic Riccati Equation (DARE) and is given by

S=ATSA— (ATSB)(R+B"SB)"'(B"SA)+Q a7
Additionally, the optimal LQR gain matrix K and the LQR cost
is computed by

(16)

K=R'B'S (18)
thus providing with the optimal policy
u=—KX (19)

For the linearized system in (9), the Q and R matrices were
chosen to be diag([100, 1, 100, 1]) and 0.01, respectively.
With Python’s Control Systems library, the discrete time LQR
problem becomes
[K, S| =dLQOR(A, B, Q, R) (20)

which allows to derive the closed loop dynamics Ac = A — BK.
Since DWA has its own cost function, a balance between LQR
and DWA costs must be maintained. A common technique to
sum multiple cost functions is to sum them with a weighting
factor w (Adachi et al. (2019)). Therefore, the total cost can
then be computed as

JZWG(Xz,X4)+(1—W)JLQR 21
With (21), the DWA algorithm can compute trade-offs between
the two cost functions, determining which objective is priori-
tized; if w is large, the DWA cost is prioritized and vice versa.
Here, we set w = 0.2. Section III presents the results of LQR
with DMDc control implementation in the DWA algorithm.

3. RESULTS AND DISCUSSION

With the open source DWA algorithm developed by Sakai
et al. (2018), LQR control was implemented and tested. The
nanorobot is simulated as if it were being guided by an MRI
through a section of the pulmonary artery.

3.1 Software Methodologies

For linearization of the nonlinear nanorobot dynamics, the set
of ordinary differential equations (ODE) in (7) was numerically
solved with ode23s as the ODEs are strongly coupled and stiff.
The numerical solutions for each state and control input were
collected and concatenated into the high dimensional matrices
X; and Y, as shown in (8); by performing respective SVD
computations in (9), DMD modes of the system were obtained.
The state and actuation matrices were then estimated by least
square regression with the PyKoopman library.

Throughout this work, MATLAB R2022a and PyCharm 2020.3.3
with Python 3.8.10 were utilized. For simulating the control
of the nanorobot, MATLAB’s Control Systems library was
used extensively to simulate the open and closed loop re-
sponses of the nanorobot system. Additional factors contribut-
ing to nanorobot dynamics, such as hydrodynamic and mag-
netic forces, were accounted for in the motion planner.

Due to limitations posed by the Matplotlib animation library,
robots with microscopic radii (Table 1) cannot be simulated in
the DWA planner. To conserve blood flow conditions in the path
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planner and match the peak Reynold’s number of Re = 3400
in the pulmonary artery (Capuano et al. (2019)), we apply
a scaling factor of 140.68 to obtain an equivalent radius of
rpwa = 0.0422cm, which is within range of acceptable robot
radii.

3.2 Closed Loop Position & Yaw LQOR Control

After obtaining the open-loop system dynamics in (9) via
DMDc, we find that the controllability and observability matri-
ces, Oc and Qy, are full rank, and conditions for full-state feed-
back control are satisfied. Considering the open and closed loop
eigenvalues A; of the state matrix, one finds that the magnitudes
of all eigenvalues are significantly less than 1, and the eigen-
values lie inside the unit circle, making the open and closed
loop systems asymptotically stable. With parameters presented
in Table 1, the step response of the linearized system is shown
in Figure 3.

As can be seen in the step response, the position state is able
to respond to the control input quicker than the yaw state.
This is expected as the sole purpose of the MRI-generated
gradients is to propel the nanorobot toward the target site. By
introducing LQR control, as in Figure 4, we found that the
transient response of the closed-loop system step response is
significantly improved. Here, the LQR controller was able to
bring the position and yaw states to the steady state much faster
(e.g., in terms of the settling time: the position state was able
to reach a unity steady-state within 0.01s.) compared to the
open-loop system, implying that LQR control of the nanorobot
effectively achieves the desired response.

Figure 5(a) depicts the tracking error e = x, — x; (Arcese et al.
(2009)) of the longitudinal position for sinusoidal reference
with LQR control, with x, = 1 + sin (0.57¢)cm. From Figure
5(a), it is shown that the closed-loop system is able to follow
the desired trajectory with good accuracy, i.e., the peak-peak
tracking error is less that 2% with respect to the reference
peak-peak amplitude (see Figure 5). As shown in Figure 5(b),
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Fig. 3. Open-loop position (a) and yaw (b) step response.
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Fig. 4. Closed-loop position (a) and yaw (b) step response.
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the maximum error is 0.0401cm and the root mean squared
error is (RMSE) of 0.0281cm. With such a low error, we
can conclude that the LQR controller can effectively track the
movement of the nanorobot. The error can be further reduced
if the sampling time used for the DMD approach is lower.
However, this also increases the computation requirement for
a real-time processor.

3.3 LOR-Dynamic Window Approach Simulation

The nanorobot and fluid parameters defined previously (e.g., in
Arcese et al. (2009)) are provided in Table 1.

Table 1. Physical parameters of the nanorobot and

walls of a selected section of the pulmonary artery. As can be
seen, the nanorobot is able to travel to the target site without
collisions with the obstacles. A sharp curve around x = 2.3cm
is noticed on the path, which indicates that the motion planner
had to quickly decrease its speed and bring the nanorobot to
a halt. After determining a feasible path, the robot quickly
accelerates and corrects its yaw angle in the direction of the
target site. Additionally, the nanorobot responds quickly to
oncoming obstacles due to the added robustness from LQR
control.

Table 2. Dynamic Window Approach Parameters
for Nanorobot

blood.
Radius r 300 x 10°m
Blood viscosity n 15103 Pa-s
Blood density I 8000 kg/m>
Robot density or 1060 kg/m?
Magnetization M 1.950 x 10% A/m
Moment of inertia I 3.26 x 10~ '*kg-m?

The parameters in Table 2 have been used in simulation in
order to reduce the search space and establish a dynamic
window: velocity, yaw rate, acceleration, velocity and yaw rate
resolutions, time step, goal cost, velocity cost, and obstacle
cost. Figure 6 shows the path of the nanorobot. With LQR
control implemented, the nanorobot was able to travel along
the artery based on the DWA-designed trajectory. The green
dot is the nanorobot’s starting point, the red line is the path
computed based on the nanorobot’s current state, the blue dot
is the spherical nanorobot, and the target site is the location
where the nanorobot stopped. The randomly generated black
dots in the artery are the obstacles such as red blood cells or
other particles travelling with the flow of blood. Note that the
two horizontal, continuous black dots in 6 act as the arterial

@ 'y & 0.05
— Simulatedn
--—-Reference| 004

0.03

(b)

0.02

0.01

-0.01

Positional Error (cm)
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Longitudinal Position (cm)

-0.03

u U U -0.04

-0.05
6 8 10 0 2 4 6 8 10
Time (s)

0.4
0.2 U u U
0
0 2 4

Time (s)

Fig. 5. (a) Sinusoidal longitudinal trajectory tracking; (b)
Tracking error.

Dynamic Window Approach with TL.QR Control

y (cm)
o
)

Fig. 6. Path of nanorobot after LQR control implementation.

dt 0.01s
Vinax 0.35ms~!
Vinin —0.5ms™!
X0 [0 —057 Z0]"
Maximum yaw rate % rad/s
Maximum acceleration 0.2 m/s?
Velocity resolution 0.01 m/s
Yaw rate resolution % rad/s
Maximum yaw acceleration % rad/s?
Goal cost 0.15
Velocity cost 1.0
Obstacle cost 1.0

4. CONCLUSION AND FUTURE WORK

This study introduces a baseline framework for linear control of
magnetically-driven nanorobots with linear quadratic regulator
control to the Dynamic Window Approach motion planner, and
is used to determine and simulate an optimal path for an MRI-
guided nanorobot to follow along in a bodily environment.
The nonlinear dynamics of the nanorobot were linearized by
obtaining a linear model with Dynamic Mode Decomposition.
Introducing LQR control to the linearized system and the DWA
path planner made the control of the nanorobot more robust and
responsive, as demonstrated by the simulation the results.

In future studies, we aim to consider the case where the
nanorobot’s motion is affected by pressure differences and
blood compressibility. This will allow for obtaining a linearized
dynamical model that will accurately reflect the actual motion
of the nanorobot against blood flow, and we expect control
performances to improve if controllers, such as H.., or adaptive
controllers are implemented. In reality, obstacles in the blood-
stream move with the flow of blood, and, therefore, it is nec-
essary to observe how the nanorobot will respond to dynamic
obstacles with LQR control.
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