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Abstract: We consider a wind field estimation problem with multiple quadcopters. The wind field
is assumed to affect the motion of the quadcopters in an additive fashion. Starting with a single
quadcopter case, we first design an Extended Kalman filter (EKF) for constant and spatial-varying wind
estimation. We next extend the EKF wind estimator for multiple quadcopters with directed connected
communication graphs. To fuse the estimates of the wind field, we develop a sequential covariance
intersection (SCI) method and a sequential weighted exponential product (SWEP) method for constant
and spatially-varying wind fields. The effectiveness of the designed partial state fusion methods is
validated and compared in simulations for various communication topologies with constant and Rankine
wind models.
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1. INTRODUCTION

Wind patterns and flow structures in the atmospheric bound-
ary layer (ABL) are diverse and complex Wetz et al. (2021);
González-Rocha et al. (2019). Wind field information can en-
hance safety, efficiency and robustness of small unmanned air-
craft vehicles (sUAV) operations in low-altitude airspace. In
addition, sUAV has become an alternative option for meteorol-
ogy and environmental study. Since sUAV is low-cost, flexible
and easy to operate, using sUAV as a tool to estimate wind
field has become popular in recent years Chen et al. (2022);
Chen and Bai (2022); McConville et al. (2022); Hattenberger
et al. (2022); Meier et al. (2022). However, most of the research
focuses on wind estimation using a single UAV instead of mul-
tiple UAVs.

Multi-UAV system can be used for monitoring Xing et al.
(2019), target-tracking Xu et al. (2022), and search and res-
cue mission Alotaibi et al. (2019). Even though the research
on wind estimation using multi-UAV is limited, using multi-
agent systems for spatial field estimation is popular. Existing
approaches includes distributed filtering approaches, Voronoi
cell based approaches, machine learning approaches, among
others. Motivated by the aforementioned applications, we focus
on applying a multi-UAV system to wind field estimation. The
advantages of using UAV swarm to measure the wind field com-
pared to a single UAV include: 1) multiple and flexible wind in-
formation in space can be sampled or estimated synchronously,
2) UAV swarm can collect more data and provide higher spatial-
temporal resolution for wind field, 3) real-time fusion of each
quadcopter’s data can increase convergence speed and reduce
estimation error.

In Bai (2018), a stable nonlinear observer to estimate a spatial
vector is designed with vehicles modeled as unicycles. Chao
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and Chen (2010) model the wind by a series of partial dif-
ferential equations and use groups of fixed-wing UAVs in the
simulation with a certain formation to measure the horizon-
tal wind profiling simultaneously. Xing et al. (2019) estimate
the wind based on wind triangle, and a recursive least-squares
estimator is designed to estimate the wind speed with online
measurements collected by a fleet of UAVs located in a circle
trajectory. Wetz et al. (2021) describe a wind estimation method
based on aerodynamic drag and quadcopter dynamics. Then a
fleet of quadcopters is deployed to hover in different locations
in a wind field. The main advantage of this approach is that mul-
tiple measurement points can be sampled synchronously. Over-
all, existing multi-UAV wind estimation approaches deploy the
UAVs as a group of wind sensors located in various locations
without considering real-time information fusion between the
UAVs.

As capabilities for airborne communication and networking
keep improving, it is expected that UAVs can achieve real-time
or in-time airborne communication to share information. Real-
time fusion of the wind estimate and its covariance from each
UAV can result in accurate wind estimation that may not be
attainable by a single UAV functioning in isolation, thereby
improving performance of relevant downstream missions. The
primary objective of fusing the estimated wind information
from multiple UAVs is to obtain a more accurate and compre-
hensive assessment of the wind. State fusion architectures can
be broadly classified into centralized fusion architecture and
distributed fusion architecture. While centralized fusion can
provide theoretically optimal solutions, it is not scalable to a
large number of nodes. As the number of the nodes increases,
processing all sensor measurements at one node becomes either
ineffective or impractical due to communication overhead and
reliability degradation Abu Bakr and Lee (2017). On the other
hand, distributed fusion is more resilient to failures and requires
less infrastructure and communication costs.
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González-Rocha et al. (2019). Wind field information can en-
hance safety, efficiency and robustness of small unmanned air-
craft vehicles (sUAV) operations in low-altitude airspace. In
addition, sUAV has become an alternative option for meteorol-
ogy and environmental study. Since sUAV is low-cost, flexible
and easy to operate, using sUAV as a tool to estimate wind
field has become popular in recent years Chen et al. (2022);
Chen and Bai (2022); McConville et al. (2022); Hattenberger
et al. (2022); Meier et al. (2022). However, most of the research
focuses on wind estimation using a single UAV instead of mul-
tiple UAVs.

Multi-UAV system can be used for monitoring Xing et al.
(2019), target-tracking Xu et al. (2022), and search and res-
cue mission Alotaibi et al. (2019). Even though the research
on wind estimation using multi-UAV is limited, using multi-
agent systems for spatial field estimation is popular. Existing
approaches includes distributed filtering approaches, Voronoi
cell based approaches, machine learning approaches, among
others. Motivated by the aforementioned applications, we focus
on applying a multi-UAV system to wind field estimation. The
advantages of using UAV swarm to measure the wind field com-
pared to a single UAV include: 1) multiple and flexible wind in-
formation in space can be sampled or estimated synchronously,
2) UAV swarm can collect more data and provide higher spatial-
temporal resolution for wind field, 3) real-time fusion of each
quadcopter’s data can increase convergence speed and reduce
estimation error.

In Bai (2018), a stable nonlinear observer to estimate a spatial
vector is designed with vehicles modeled as unicycles. Chao

⋆ The work is supported by the National Science Foundation (NSF) under
Grant No. 1925147.

and Chen (2010) model the wind by a series of partial dif-
ferential equations and use groups of fixed-wing UAVs in the
simulation with a certain formation to measure the horizon-
tal wind profiling simultaneously. Xing et al. (2019) estimate
the wind based on wind triangle, and a recursive least-squares
estimator is designed to estimate the wind speed with online
measurements collected by a fleet of UAVs located in a circle
trajectory. Wetz et al. (2021) describe a wind estimation method
based on aerodynamic drag and quadcopter dynamics. Then a
fleet of quadcopters is deployed to hover in different locations
in a wind field. The main advantage of this approach is that mul-
tiple measurement points can be sampled synchronously. Over-
all, existing multi-UAV wind estimation approaches deploy the
UAVs as a group of wind sensors located in various locations
without considering real-time information fusion between the
UAVs.

As capabilities for airborne communication and networking
keep improving, it is expected that UAVs can achieve real-time
or in-time airborne communication to share information. Real-
time fusion of the wind estimate and its covariance from each
UAV can result in accurate wind estimation that may not be
attainable by a single UAV functioning in isolation, thereby
improving performance of relevant downstream missions. The
primary objective of fusing the estimated wind information
from multiple UAVs is to obtain a more accurate and compre-
hensive assessment of the wind. State fusion architectures can
be broadly classified into centralized fusion architecture and
distributed fusion architecture. While centralized fusion can
provide theoretically optimal solutions, it is not scalable to a
large number of nodes. As the number of the nodes increases,
processing all sensor measurements at one node becomes either
ineffective or impractical due to communication overhead and
reliability degradation Abu Bakr and Lee (2017). On the other
hand, distributed fusion is more resilient to failures and requires
less infrastructure and communication costs.

Wind Field Estimation Using Multiple Quadcopters

Hao Chen ∗ He Bai ∗ Clark N. Taylor ∗∗

∗ School of Mechanical and Aerospace Engineering, Oklahoma State
University, Stillwater, OK 74078 USA

(e-mail: {hao.chen,he.bai}@ okstate.edu)
∗∗ Department of Electrical and Computer Engineering, Air Force Institute of

Technology, Wright-Patterson, OH, USA (e-mail: clark.taylor@afit.edu)

Abstract: We consider a wind field estimation problem with multiple quadcopters. The wind field
is assumed to affect the motion of the quadcopters in an additive fashion. Starting with a single
quadcopter case, we first design an Extended Kalman filter (EKF) for constant and spatial-varying wind
estimation. We next extend the EKF wind estimator for multiple quadcopters with directed connected
communication graphs. To fuse the estimates of the wind field, we develop a sequential covariance
intersection (SCI) method and a sequential weighted exponential product (SWEP) method for constant
and spatially-varying wind fields. The effectiveness of the designed partial state fusion methods is
validated and compared in simulations for various communication topologies with constant and Rankine
wind models.

Keywords: wind estimation, multi-agent system, state fusion, EKF, covariance intersection

1. INTRODUCTION

Wind patterns and flow structures in the atmospheric bound-
ary layer (ABL) are diverse and complex Wetz et al. (2021);
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González-Rocha et al. (2019). Wind field information can en-
hance safety, efficiency and robustness of small unmanned air-
craft vehicles (sUAV) operations in low-altitude airspace. In
addition, sUAV has become an alternative option for meteorol-
ogy and environmental study. Since sUAV is low-cost, flexible
and easy to operate, using sUAV as a tool to estimate wind
field has become popular in recent years Chen et al. (2022);
Chen and Bai (2022); McConville et al. (2022); Hattenberger
et al. (2022); Meier et al. (2022). However, most of the research
focuses on wind estimation using a single UAV instead of mul-
tiple UAVs.

Multi-UAV system can be used for monitoring Xing et al.
(2019), target-tracking Xu et al. (2022), and search and res-
cue mission Alotaibi et al. (2019). Even though the research
on wind estimation using multi-UAV is limited, using multi-
agent systems for spatial field estimation is popular. Existing
approaches includes distributed filtering approaches, Voronoi
cell based approaches, machine learning approaches, among
others. Motivated by the aforementioned applications, we focus
on applying a multi-UAV system to wind field estimation. The
advantages of using UAV swarm to measure the wind field com-
pared to a single UAV include: 1) multiple and flexible wind in-
formation in space can be sampled or estimated synchronously,
2) UAV swarm can collect more data and provide higher spatial-
temporal resolution for wind field, 3) real-time fusion of each
quadcopter’s data can increase convergence speed and reduce
estimation error.

In Bai (2018), a stable nonlinear observer to estimate a spatial
vector is designed with vehicles modeled as unicycles. Chao

⋆ The work is supported by the National Science Foundation (NSF) under
Grant No. 1925147.

and Chen (2010) model the wind by a series of partial dif-
ferential equations and use groups of fixed-wing UAVs in the
simulation with a certain formation to measure the horizon-
tal wind profiling simultaneously. Xing et al. (2019) estimate
the wind based on wind triangle, and a recursive least-squares
estimator is designed to estimate the wind speed with online
measurements collected by a fleet of UAVs located in a circle
trajectory. Wetz et al. (2021) describe a wind estimation method
based on aerodynamic drag and quadcopter dynamics. Then a
fleet of quadcopters is deployed to hover in different locations
in a wind field. The main advantage of this approach is that mul-
tiple measurement points can be sampled synchronously. Over-
all, existing multi-UAV wind estimation approaches deploy the
UAVs as a group of wind sensors located in various locations
without considering real-time information fusion between the
UAVs.

As capabilities for airborne communication and networking
keep improving, it is expected that UAVs can achieve real-time
or in-time airborne communication to share information. Real-
time fusion of the wind estimate and its covariance from each
UAV can result in accurate wind estimation that may not be
attainable by a single UAV functioning in isolation, thereby
improving performance of relevant downstream missions. The
primary objective of fusing the estimated wind information
from multiple UAVs is to obtain a more accurate and compre-
hensive assessment of the wind. State fusion architectures can
be broadly classified into centralized fusion architecture and
distributed fusion architecture. While centralized fusion can
provide theoretically optimal solutions, it is not scalable to a
large number of nodes. As the number of the nodes increases,
processing all sensor measurements at one node becomes either
ineffective or impractical due to communication overhead and
reliability degradation Abu Bakr and Lee (2017). On the other
hand, distributed fusion is more resilient to failures and requires
less infrastructure and communication costs.



62	 Hao Chen  et al. / IFAC PapersOnLine 56-3 (2023) 61–66

Because local estimates can be correlated, distributed fusion
needs to take the correlations among the local estimates into
consideration Abu Bakr and Lee (2017). Ignoring the cross-
correlation can result in overconfident outcomes and even cause
the fusion algorithm to fail. Consensus Battistelli et al. (2014)
is a tool of averaging distributed information but it requires
multiple communication iterations at each timestamp. To be
more efficient, covariance intersection (CI) Julier and Uhlmann
(2007) can fuse information pairs under unknown correlation
with one-hop communication. In multi-UAV wind estimation,
each UAV maintains an estimator which contains the ownship
states (UAV’s own states such as position, velocity and attitude)
and target states (wind vector or wind parameters). Fusing the
wind estimates can be treated as a partial state decentralized
data fusion (DDF) problem. The factorized weighted exponen-
tial product (WEP) in Ahmed et al. (2016); Ahmed (2014) is
designed for performing partial state DDF.

The main contribution of this paper is as follows. 1) We de-
sign iterative nonlinear distributed wind fusion methods by
integrating EKF, with sequential CI (SCI) and sequential WEP
(SWEP). Such methods fuse wind estimates as well as covari-
ance under unknown correlations. Since each agent’s informa-
tion is shared and fused, the wind field estimation of each quad-
copter is expected to converge faster with better accuracy. 2) We
verify and compare various multi-UAV wind field estimation
methods under different wind fields and communication graphs.
The simulation results show that EKF with fusion has less error
and converges faster for wind field estimation when compared
to that of EKF without fusion.

The rest of the paper is organized as follows. In Section 2,
we introduce the single quadcopter dynamics in the presence
of wind and extend it to model multi-quadcopter in a spatial
wind field. In Section 3, we present the multi-UAV wind field
estimation algorithms for EKF without fusion, EKF with SCI
fusion, and EKF with SWEP fusion. Section 4 provides simu-
lation results of the designed methods. Conclusions and future
work are discussed in Section 5.

2. PROBLEM FORMULATION

2.1 Quadcopter dynamics in wind

The translational dynamics and attitude kinematics of a quad-
copter subject to a wind disturbance in the north-east-down
(NED) frame is given by

ẋ = q∗ vr ∗q−1 + vw,vw = F(x,d)

v̇r = vr ×ω +q−1 ∗ggg∗q+
1
m

fff c +
1
m

fd

q̇ =
1
2

q∗ω

ḋ = 0

(1)

where x ∈ R3 is the inertial position, vr = q−1 ∗ (vg − vw) ∗
q ∈ R3 is the relative velocity in the body frame, and vg ∈ R3

and vw ∈ R3 are the ground and wind velocity in the inertial
frame respectively, d denotes the constant parameters in a
spatial wind field F(x,d), q ∈ R4 is the unit quaternion which
represents quadcopter’s orientation with respect to the inertial
frame, and ∗ denotes the quaternion multiplication in which any
vector in R3 is augmented to a quaternion with 0 being the
scalar part, ω ∈ R3 is the angular velocity in the body frame,
ggg = [0,0,g]T ∈ R3 denotes the gravity acceleration vector in

inertial frame, fff ccc = [0,0,− fc]
T ∈ R3 denotes the thrust vector

in body frame where fc is the amplitude of the thrust control
input, and fd denotes the drag force due to air resistance. We
use a quadratic thrust model as shown below where ρ is the air
density and D denotes the drag coefficient matrix:

fd =−1
2

ρD|vr|vr, D =

 Dx 0 0
0 Dy 0
0 0 Dz


. (2)

For thrust model, we use the nominal thrust model fc =
kΩ ∑4

i=1 Ω2
i where kΩ is the thrust coefficient and Ωi is the

angular speed of the each rotor.

We define the quadcopter’s ownship state vector as s =
[xT vT

r qT ]T and the full state vector as X = [sT dT ]T . We
also define the measured angular velocity from the gyroscope
and the thrust fc as an input vector U = [ fc ωT ]T . We as-
sume that the quadcopter is equipped with a GPS, a 3-axis
accelerometer and gyroscope, and a magnetometer. We assume
that biases of the sensors are calibrated. The measured outputs
y = (yT

x ,y
T
a ,y

T
b )

T are

y = h(X ,U) =




x
a

q−1 ∗B∗q


 (3)

where B ∈ R3 denotes the earth’s magnetic field in the inertial
frame and a = 1

m ( fff ccc + fd) ∈ R3 is the specific acceleration
vector in the body frame.

2.2 Multiple quadcopters in a wind field

Consider a network of N quadcopters hovering in a wind field
vw. The system dynamics for the quadcopter swarm is given by

ẋi = qi ∗ vr,i ∗q−1
i + vw,i,vw,i = F(xi,d)

v̇r,i = vr,i ×ωi +q−1
i ∗ggg∗qi +

1
m

fff c,i +
1
m

fd,i

q̇i =
1
2

qi ∗ωi

ḋ = 0.

(4)

where vw,i is the wind vector at quadcopter i′s location and the
function F(xi,d) is a general representation of a spatial wind
field parameterized by a constant parameter d.

We employ a directed graph G = (V,E) to represent the com-
munication topology between the quadcopters, where V =
{1, ...,N} denotes the set of the quadcopters (agents) and
E ∈ V ×V denotes the set of communication links between
the agents. We assume that each agent contains self loops,
i.e.,(i, i) ∈ E. We define agent i′s neighboring set as Ni =
{ j|( j, i) ∈ E, j ∈V}. The cardinality of Ni is ni.

Since different quadcopters are deployed at different locations
xi, they experience different wind vw,i and thus their estimates of
d may contain different information. The objective is to design
fusion mechanisms among the quadcopters to combine their
estimates of d and obtain a joint estimate of the wind field. We
expect that the jointly estimated wind field is more accurate and
converges faster.

3. MULTI-QUADCOPTER WIND ESTIMATION

In this section, we first introduce the design for an EKF wind
estimator, which will be used by each quadcopter to estimate
wind separately. Then two partial state DDF methods, SCI and
SWEP, will be designed with the EKF.
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Because local estimates can be correlated, distributed fusion
needs to take the correlations among the local estimates into
consideration Abu Bakr and Lee (2017). Ignoring the cross-
correlation can result in overconfident outcomes and even cause
the fusion algorithm to fail. Consensus Battistelli et al. (2014)
is a tool of averaging distributed information but it requires
multiple communication iterations at each timestamp. To be
more efficient, covariance intersection (CI) Julier and Uhlmann
(2007) can fuse information pairs under unknown correlation
with one-hop communication. In multi-UAV wind estimation,
each UAV maintains an estimator which contains the ownship
states (UAV’s own states such as position, velocity and attitude)
and target states (wind vector or wind parameters). Fusing the
wind estimates can be treated as a partial state decentralized
data fusion (DDF) problem. The factorized weighted exponen-
tial product (WEP) in Ahmed et al. (2016); Ahmed (2014) is
designed for performing partial state DDF.

The main contribution of this paper is as follows. 1) We de-
sign iterative nonlinear distributed wind fusion methods by
integrating EKF, with sequential CI (SCI) and sequential WEP
(SWEP). Such methods fuse wind estimates as well as covari-
ance under unknown correlations. Since each agent’s informa-
tion is shared and fused, the wind field estimation of each quad-
copter is expected to converge faster with better accuracy. 2) We
verify and compare various multi-UAV wind field estimation
methods under different wind fields and communication graphs.
The simulation results show that EKF with fusion has less error
and converges faster for wind field estimation when compared
to that of EKF without fusion.

The rest of the paper is organized as follows. In Section 2,
we introduce the single quadcopter dynamics in the presence
of wind and extend it to model multi-quadcopter in a spatial
wind field. In Section 3, we present the multi-UAV wind field
estimation algorithms for EKF without fusion, EKF with SCI
fusion, and EKF with SWEP fusion. Section 4 provides simu-
lation results of the designed methods. Conclusions and future
work are discussed in Section 5.

2. PROBLEM FORMULATION

2.1 Quadcopter dynamics in wind

The translational dynamics and attitude kinematics of a quad-
copter subject to a wind disturbance in the north-east-down
(NED) frame is given by

ẋ = q∗ vr ∗q−1 + vw,vw = F(x,d)

v̇r = vr ×ω +q−1 ∗ggg∗q+
1
m

fff c +
1
m

fd

q̇ =
1
2

q∗ω

ḋ = 0

(1)

where x ∈ R3 is the inertial position, vr = q−1 ∗ (vg − vw) ∗
q ∈ R3 is the relative velocity in the body frame, and vg ∈ R3

and vw ∈ R3 are the ground and wind velocity in the inertial
frame respectively, d denotes the constant parameters in a
spatial wind field F(x,d), q ∈ R4 is the unit quaternion which
represents quadcopter’s orientation with respect to the inertial
frame, and ∗ denotes the quaternion multiplication in which any
vector in R3 is augmented to a quaternion with 0 being the
scalar part, ω ∈ R3 is the angular velocity in the body frame,
ggg = [0,0,g]T ∈ R3 denotes the gravity acceleration vector in

inertial frame, fff ccc = [0,0,− fc]
T ∈ R3 denotes the thrust vector

in body frame where fc is the amplitude of the thrust control
input, and fd denotes the drag force due to air resistance. We
use a quadratic thrust model as shown below where ρ is the air
density and D denotes the drag coefficient matrix:

fd =−1
2

ρD|vr|vr, D =

 Dx 0 0
0 Dy 0
0 0 Dz


. (2)

For thrust model, we use the nominal thrust model fc =
kΩ ∑4

i=1 Ω2
i where kΩ is the thrust coefficient and Ωi is the

angular speed of the each rotor.

We define the quadcopter’s ownship state vector as s =
[xT vT

r qT ]T and the full state vector as X = [sT dT ]T . We
also define the measured angular velocity from the gyroscope
and the thrust fc as an input vector U = [ fc ωT ]T . We as-
sume that the quadcopter is equipped with a GPS, a 3-axis
accelerometer and gyroscope, and a magnetometer. We assume
that biases of the sensors are calibrated. The measured outputs
y = (yT

x ,y
T
a ,y

T
b )

T are

y = h(X ,U) =




x
a

q−1 ∗B∗q


 (3)

where B ∈ R3 denotes the earth’s magnetic field in the inertial
frame and a = 1

m ( fff ccc + fd) ∈ R3 is the specific acceleration
vector in the body frame.

2.2 Multiple quadcopters in a wind field

Consider a network of N quadcopters hovering in a wind field
vw. The system dynamics for the quadcopter swarm is given by

ẋi = qi ∗ vr,i ∗q−1
i + vw,i,vw,i = F(xi,d)

v̇r,i = vr,i ×ωi +q−1
i ∗ggg∗qi +

1
m

fff c,i +
1
m

fd,i

q̇i =
1
2

qi ∗ωi

ḋ = 0.

(4)

where vw,i is the wind vector at quadcopter i′s location and the
function F(xi,d) is a general representation of a spatial wind
field parameterized by a constant parameter d.

We employ a directed graph G = (V,E) to represent the com-
munication topology between the quadcopters, where V =
{1, ...,N} denotes the set of the quadcopters (agents) and
E ∈ V ×V denotes the set of communication links between
the agents. We assume that each agent contains self loops,
i.e.,(i, i) ∈ E. We define agent i′s neighboring set as Ni =
{ j|( j, i) ∈ E, j ∈V}. The cardinality of Ni is ni.

Since different quadcopters are deployed at different locations
xi, they experience different wind vw,i and thus their estimates of
d may contain different information. The objective is to design
fusion mechanisms among the quadcopters to combine their
estimates of d and obtain a joint estimate of the wind field. We
expect that the jointly estimated wind field is more accurate and
converges faster.

3. MULTI-QUADCOPTER WIND ESTIMATION

In this section, we first introduce the design for an EKF wind
estimator, which will be used by each quadcopter to estimate
wind separately. Then two partial state DDF methods, SCI and
SWEP, will be designed with the EKF.

3.1 EKF-WIO

The baseline of our multi-quadcopter wind estimation is an
EKF without fusion of neighbors’ information, which we call
EKF-WIO. Such a method is similar to most of existing multi-
UAV wind estimation methods since there is no informa-
tion sharing among the quadcopters. The designed EKF is a
continuous-discrete EKF Beard (2008) whose prediction step
is propagated in a continuous way while the correction step is
done in discrete time. To derive the EKF algorithm, we consider
multiplicative process noise in the system dynamics and obtain

ẋi = qi ∗ vr,i ∗q−1
i + vw,i +wx

v̇r,i = vr,i × (ωi +wω)+q−1
i ∗ggg∗qi +

1
m
( fff c,i +www fff )+

1
m

fd,i

q̇i =
1
2

qi ∗ (ωi +wω)

ḋ = 0+wd ,
(5)

where www f = [0,0,w f ]
T and w = [wT

x ,w
T
ω ,w f ,wT

d ]
T ∈ R10 are

process noises. The pseudo code for a single EKF is shown in
algorithm 1.

Algorithm 1 EKF

1: Initialize X̂ , P̂
2: for k ← 1 to K do
3: Prediction: in between measurements (t ∈ [tk−1, tk])
4: propagate ˙̂X = f (X̂ ,U) to obtain X̂−

k

5: A = ∂ f
∂X ,L = ∂ f

∂w
6: propagate P̂ = AP̂+ P̂AT +LQLT to obtain P̂−

k
7: Correction: at the kth sensor measurement (t = tk)
8: Hk =

∂y
∂X

9: Kk = P̂−
k Hk(HkP̂−

k HT +R)−1

10: X̂+
k = X̂−

k +Kk(ym,k −h(X̂−
k ,Uk))

11: P̂+
k = (I −KkH)P̂−

k
12: end for

3.2 EKF-SCI

Before we employ covariance intersection to fuse estimates
between quadcopter i and j, there are two extra steps to be
done. First, we define s j = [xT

j vT
r, j qT

j ]
T as the local state vector

of quadcopter j. Let quadcopter j marginalize out s j from its
joint Gaussian probability density function (pdf) to produce
the marginal Gaussian pdf p j(d j) ∼ N(d̂ j,

dP̂j) for the wind
estimates, where the marginal sufficient statistics are obtained
by removing the rows and columns corresponding to s j from
the mean vector and covariance matrix of the Gaussian distribu-
tion over Xj. Second, let quadcopter j ‘extend’ the distribution
p j(d j) to include local states of platform i. However, since
quadcopter j does not have any information about si, quad-
copter j augments dPj with infinity on the diagonal elements
and zeros on off-diagonal elements, which yields platform j’s
pseudo-joint distribution p j(si,d j)∼N(X̂ j,

XP̂j) as

X̂ j =

[
si
d j

]
,XP̂j =

[
∞ 0
0 dPj

]
. (6)

We fuse it with pi(si,di) ∼ N(X̂i,
XP̂i) via covariance intersec-

tion, i.e.,

XP̂−1
f ,i = ωX

i P̂−1
i +(1−ωi)

[
∞ 0
0 dP̂j

]−1

(7)

X̂ f ,i =
XP̂f ,i

(
ωi

XP̂−1
i X̂i +(1−ωi)

[
∞ 0
0 dP̂j

]−1 [ si
d j

])
(8)

where ωi ∈ [0,1] is a weight.

We choose ωi to minimize the trace of the fused covariance
matrix, i.e., minωi J = tr(XP̂f ,i). Finding the optimal ωi is a
one-dimensional optimization problem, which can be solved by
a binary search method. For fusing more than two data sources,
we make use of the sequential covariance intersection (SCI) as
shown in Deng et al. (2012). By integrating the designed EKF
wind estimator with SCI data fusion, we develop our EKF-SCI
algorithm and the pseudo code is shown in Algorithm 2.

3.3 EKF-SWEP

In Ahmed (2014), a weighted exponential product (WEP) rule
was proposed to fuse estimates when correlation is unknown,
i.e.,

p f ,i(X) ∝ pi(X)ω p j(X)1−ω ,ω ∈ [0,1]. (9)
Applying the conditional factorized WEP to our wind estima-
tion problem with multiple quadcopters leads to the following

p f ,i(si,d) = p f ,i(d)p f ,i(si|d)
= pi(d)ω p j(d)1−ω pi(si|d)
= pi(d)(pi(d)ω−1 p j(d)1−ω)pi(si|d)
= pi(d) pi(si|d) (pi(d)ω−1 p j(d)1−ω)

= pi(si,d)gi, j(d;ω)

(10)

where gi, j = pi(d)ω−1 p j(d)1−ω is an unnormalized Gaussian
function given by

gi j ∼N(d̂ f ,
dP̂f )

dP̂f =
(
(ω −1) dP̂−1

i +(1−ω) dP̂−1
j

)−1

d̂ f =
dP̂f

(
(ω −1) dP̂−1

i d̂i +(1−ω) dP̂−1
j d̂ j

)
.

(11)

The updated Gaussian joint pdf over d and si is given by
p f ,i(si,d)∼N(X̂ f ,i,

XP̂f ,i)

XP̂f ,i =

(
XP̂−1

i +

[
0 0
0 dP̂−1

f

])−1

X̂ f ,i =
XP̂f ,i

(
X P̂−1

i X̂i +

[
0

dP̂−1
f d̂ f

])
.

(12)

Therefore, we can derive a 2-step process to address this fusion
problem: 1) perform SCI fusion on the marginal estimates for
d from each platform according to (11); 2) perform a local
update for si at quadcopter i conditioned on the newly SCI-
updated estimate for d based on (12). Similarly, when it comes
to fuse more than two data sources, we use the sequential WEP
(SWEP). The optimal weight is also obtained by a binary search
method to minimize the trace of the fused covariance matrix.
The pseudo code is shown in Algorithm 3.

4. SIMULATION RESULTS

4.1 Simulation setup

Our simulator is developed based on the MATLAB simula-
tor in Soria et al. (2020). We adapt the simulator to include
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Algorithm 2 EKF-SCI

1: Initialize X̂ , P̂ for each quadcopter
2: for k ← 1 to K do
3: for i ← 1 to N do
4: (X̂i,

XP̂i) = EKF(X̂i,k−1,
XP̂i,k−1)

5: end for
6: for i ← 1 to N do
7: for j ← 1 to ni do
8: marginalize p j(s j,d j) to get p j(d j)∼N(d̂ j,

dP̂j)

9: extend p j(d j)∼N(d̂ j,
dP̂j) as

10: p j(si,d j)∼N(X̂ j,
XP̂j)

11: CCCooovvvaaarrriiiaaannnccceee IIInnnttteeerrrssseeeccctttiiiooonnn :::
12: XP̂−1

f ,i = ωi
XP̂−1

i +(1−ωi)
XP̂−1

j

13: X̂ f ,i =
X P̂f ,i(ωi

XP̂−1
i X̂i +(1−ωi)

XP̂−1
j X̂ j)

14: end for
15: end for
16: end for

Algorithm 3 EKF-SWEP

1: Initialize X̂ , P̂ for each quadcopter
2: for k ← 1 to K do
3: for i ← 1 to N do
4: (X̂i,

XP̂i) = EKF(X̂i,k−1,
XP̂i,k−1)

5: end for
6: for i ← 1 to N do
7: marginalize i and all its neighbors to obtain pi(d)

and p j(d)
8: for j ← 1 to ni do
9: FFFuuussseee WWWiiinnnddd :::

10: dP̂f ,i =

(ωi −1)dP̂−1

i +(1−ωi)
dP̂−1

j

−1

11: d̂ f ,i =
d P̂f ,i


(ωi −1) dP̂−1

i d̂i +(1−ωi)
dP̂−1

j d̂ j



12: end for
13: FFFuuussseee FFFuuullllll SSStttaaattteee :::

14: XP̂f ,i =


XP̂−1

i +


0 0
0 dP−1

f ,i

−1

15: X̂ f ,i =
X P̂f ,i


XP̂−1

i X̂i +


0

dP̂−1
f ,i d̂ f ,i



16: end for
17: end for

quadcopter system dynamics, motor and rotor models, sensor
models, estimators, and position and attitude controllers. We
conduct Monte Carlo (MC) simulations of 50 runs and each
simulation lasts for 100 seconds. We choose a total number of
4 quadcopters as an example for demonstration.

We consider three different communication scenarios, includ-
ing a fully connected graph, a ring graph, and a gossip protocol.
The adjacency matrices for the fully connected graph and the
ring graph are given by

Ad,fully =




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


 ,Ad,ring =




0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


 , (13)

respectively. For the gossip-based protocol, two quadcopters
are randomly selected at each time instant to communicate.

We let each quadcopter fly from the origin to [100 100 −
20]T , [100 − 100 − 40]T , [−100 − 100 − 60]T , [−100 100 −
100]T in the NED frame, respectively and then hover at its loca-

tion. The following parameters are used in all the simulations:

µ0,i =[0,0,0,0,0,0,1,0,0,0,0,0,0]T

P0,i =diag(12,12,12,12,12,12,12,12,12,12,12,12,12)

X̂0,i ∼N(µ0,i,P0,i)

where X̂0,i and P0,i represents the initial states and covariance
matrix used in each quadcopter’s EKF. The process and mea-
surement noise covariance matrices for the EKF are

Q = [diag(0.1,0.1,0.1,0.0023,0.0023,0.0023,0,0.001,0.001,0.001)]2

R = [diag(0.1,0.1,0.1,0.025,0.025,0.025,0.001,0.001,0.001)]2.

4.2 Comparison results

We first compare the EKF-WIO, EKF-SCI and EKF-SWEP
wind estimation performance under three various communica-
tion topology when the wind field is spatially uniform. Then
We compare the EKF-WIO, EKF-SCI and EKF-SWEP when
the wind field is spatially-varying using a Rankine model.

Constant wind We consider a constant wind field, i.e.,
vw = F(x,d) = [d1 d2 d3]

T , (14)
and focus on the horizontal wind estimation where d1 =
1 m/s, d2 = 2 m/s, and d3 = 0 m/s. Fig. 1(a) shows wind
estimation performance with EKF-WIO from one simulation
in the MC runs. Fig. 1(b) and Fig. 1(c) show wind estima-
tion performance based on EKF-SCI and EKF-SWEP. Both
algorithms produce improved performance compared to EKF
method without fusion. The transient error has been reduced
and the estimates from all the UAVs show a consensus trend.

(a) (b)

(c)
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Fig. 1. Single run and MC simulation examples (first 30 sec-
onds) under fully connected graph. (a) EKF-WIO constant
wind estimation (b) EKF-SCI constant wind estimation (c)
EKF-SWEP constant wind estimation (d) Comparison of
RMSEk of EKF-WIO, EKF-SCI and EKF-SWEP under
constant wind

For MC simulation results, wind estimation performance of var-
ious methods is evaluated by root mean square error (RMSE).
For example, the RMSE of wind d (d1 or d2) for quadcopter i

at each time instant k is as RMSEk,i =


∑Nm

m=1(dk,i−d̂k,i)
2

Nm
where
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Algorithm 2 EKF-SCI

1: Initialize X̂ , P̂ for each quadcopter
2: for k ← 1 to K do
3: for i ← 1 to N do
4: (X̂i,

XP̂i) = EKF(X̂i,k−1,
XP̂i,k−1)

5: end for
6: for i ← 1 to N do
7: for j ← 1 to ni do
8: marginalize p j(s j,d j) to get p j(d j)∼N(d̂ j,

dP̂j)

9: extend p j(d j)∼N(d̂ j,
dP̂j) as

10: p j(si,d j)∼N(X̂ j,
XP̂j)

11: CCCooovvvaaarrriiiaaannnccceee IIInnnttteeerrrssseeeccctttiiiooonnn :::
12: XP̂−1

f ,i = ωi
XP̂−1

i +(1−ωi)
XP̂−1

j

13: X̂ f ,i =
X P̂f ,i(ωi

XP̂−1
i X̂i +(1−ωi)

XP̂−1
j X̂ j)

14: end for
15: end for
16: end for

Algorithm 3 EKF-SWEP

1: Initialize X̂ , P̂ for each quadcopter
2: for k ← 1 to K do
3: for i ← 1 to N do
4: (X̂i,

XP̂i) = EKF(X̂i,k−1,
XP̂i,k−1)

5: end for
6: for i ← 1 to N do
7: marginalize i and all its neighbors to obtain pi(d)

and p j(d)
8: for j ← 1 to ni do
9: FFFuuussseee WWWiiinnnddd :::

10: dP̂f ,i =

(ωi −1)dP̂−1

i +(1−ωi)
dP̂−1

j

−1

11: d̂ f ,i =
d P̂f ,i


(ωi −1) dP̂−1

i d̂i +(1−ωi)
dP̂−1

j d̂ j



12: end for
13: FFFuuussseee FFFuuullllll SSStttaaattteee :::

14: XP̂f ,i =


XP̂−1

i +


0 0
0 dP−1

f ,i

−1

15: X̂ f ,i =
X P̂f ,i


XP̂−1

i X̂i +


0

dP̂−1
f ,i d̂ f ,i



16: end for
17: end for

quadcopter system dynamics, motor and rotor models, sensor
models, estimators, and position and attitude controllers. We
conduct Monte Carlo (MC) simulations of 50 runs and each
simulation lasts for 100 seconds. We choose a total number of
4 quadcopters as an example for demonstration.

We consider three different communication scenarios, includ-
ing a fully connected graph, a ring graph, and a gossip protocol.
The adjacency matrices for the fully connected graph and the
ring graph are given by

Ad,fully =




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


 ,Ad,ring =




0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


 , (13)

respectively. For the gossip-based protocol, two quadcopters
are randomly selected at each time instant to communicate.

We let each quadcopter fly from the origin to [100 100 −
20]T , [100 − 100 − 40]T , [−100 − 100 − 60]T , [−100 100 −
100]T in the NED frame, respectively and then hover at its loca-

tion. The following parameters are used in all the simulations:

µ0,i =[0,0,0,0,0,0,1,0,0,0,0,0,0]T

P0,i =diag(12,12,12,12,12,12,12,12,12,12,12,12,12)

X̂0,i ∼N(µ0,i,P0,i)

where X̂0,i and P0,i represents the initial states and covariance
matrix used in each quadcopter’s EKF. The process and mea-
surement noise covariance matrices for the EKF are

Q = [diag(0.1,0.1,0.1,0.0023,0.0023,0.0023,0,0.001,0.001,0.001)]2

R = [diag(0.1,0.1,0.1,0.025,0.025,0.025,0.001,0.001,0.001)]2.

4.2 Comparison results

We first compare the EKF-WIO, EKF-SCI and EKF-SWEP
wind estimation performance under three various communica-
tion topology when the wind field is spatially uniform. Then
We compare the EKF-WIO, EKF-SCI and EKF-SWEP when
the wind field is spatially-varying using a Rankine model.

Constant wind We consider a constant wind field, i.e.,
vw = F(x,d) = [d1 d2 d3]

T , (14)
and focus on the horizontal wind estimation where d1 =
1 m/s, d2 = 2 m/s, and d3 = 0 m/s. Fig. 1(a) shows wind
estimation performance with EKF-WIO from one simulation
in the MC runs. Fig. 1(b) and Fig. 1(c) show wind estima-
tion performance based on EKF-SCI and EKF-SWEP. Both
algorithms produce improved performance compared to EKF
method without fusion. The transient error has been reduced
and the estimates from all the UAVs show a consensus trend.
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Fig. 1. Single run and MC simulation examples (first 30 sec-
onds) under fully connected graph. (a) EKF-WIO constant
wind estimation (b) EKF-SCI constant wind estimation (c)
EKF-SWEP constant wind estimation (d) Comparison of
RMSEk of EKF-WIO, EKF-SCI and EKF-SWEP under
constant wind

For MC simulation results, wind estimation performance of var-
ious methods is evaluated by root mean square error (RMSE).
For example, the RMSE of wind d (d1 or d2) for quadcopter i

at each time instant k is as RMSEk,i =


∑Nm

m=1(dk,i−d̂k,i)
2

Nm
where

Table 1. Constant wind estimation RMSE of EKF-
WIO, EKF-SCI and EKF-SWEP under fully con-
nected graph (FG), ring graph (RG) and gossip

protocol (GP)

Method d1/d2 RMSEtrans RMSEsteady RMSEtotal

EKF-WIO d1 1.4545 0.4036 0.9213
EKF-WIO d2 2.7238 0.4539 1.3355

EKF-SWEP (FG) d1 1.3288 0.0467 0.2687
EKF-SWEP (FG) d2 1.3285 0.0258 0.2031

EKF-SCI (FG) d1 1.3537 0.0681 0.3489
EKF-SCI (FG) d2 1.9447 0.0879 0.4342

EKF-SWEP (RG) d1 1.2985 0.0388 0.2345
EKF-SWEP (RG) d2 1.3738 0.0320 0.2248

EKF-SCI (RG) d1 1.3676 0.0689 0.3525
EKF-SCI (RG) d2 1.9450 0.0879 0.4344

EKF-SWEP (GP) d1 1.3237 0.0406 0.2420
EKF-SWEP (GP) d2 1.3623 0.0290 0.2159

EKF-SCI (GP) d1 1.3698 0.0692 0.3537
EKF-SCI (GP) d2 1.9440 0.0880 0.4344

Nm = 50 is the total runs of MC simulations. Since RMSE of
single quadcopter does not represent the overall swarm wind
estimation performance, we introduce mean RMSE of all quad-

copters at the kth time instant RMSEk =
∑N

i=1 RMSEk,i
N where

N = 4 is total number of the quadcopter swarm. We further
compute the average of RMSEk over different time periods,
including the first 10 seconds, the last 10 seconds, and the entire
100 seconds, to show transient, steady-state, and overall perfor-
mance of various methods, respectively. They are represented
by RMSEtrans, RMSEsteady, and RMSEtotal as shown below

RMSEtrans =
∑10 fe

k=1 RMSEk

10 fe
(15)

RMSEsteady =
∑K fe

k=(K−10) fe
RMSEk

10 fe
(16)

RMSEtotal =
∑K fe

k=1 RMSEk

K fe
. (17)

where K = 100 is total time of one-run MC simulation and
fe = 100 is the frequency of the EKF.

Table 1 compares the constant wind estimation performance
of EKF-WIO, EKF-SCI and EKF-SWEP under the fully con-
nected graph, the ring graph and the gossip protocol, respec-
tively. Fig. 1(d) shows the RMSEk of three different methods
under the fully connected graph. We observe that 1) the EKF
with either fusion algorithm (EKF-SCI or EKF-SWEP) reduces
the transient, steady and total RMSE and accelerates conver-
gence speed when compared to EKF-WIO. 2) EKF-SWEP
shows slightly better overall performance compared to EKF-
SCI for constant wind. 3) The fusion algorithms appear robust
to different communication topologies.

Rankine Wind We also use a Rankine wind model to evaluate
the performance of the fusion algorithms. The spatial model of
the wind is given by vw = G(x)d where G(x)∈Rn×n is a known
basis function matrix, and the d ∈Rn is the unknown parameter
vector. The Rankine vortex model is a simple two-equation
parametric description of a swirling flow and it is usually used
for tornado and cyclone modeling. We use the following model
from Bai (2018)
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Fig. 2. Multiple UAVs hover in the Rankine wind field

vw = F(x,d) =

[G1(x)d1
G2(x)d2

d3

]
(18)

G1(x) =− x2

2π
√

x2
1 + x2

2

,G2(x) =
x1

2π
√

x2
1 + x2

2

. (19)

The Rankine wind model is only applicable to horizontal wind.
The vertical wind is modeled as a constant wind. We set d1 = 10
and d2 = 20, and d3 = 0 m/s. Figure 2 shows 4 quadcopters
hovering in the spatial-varying Rankine wind field. We assume
that the center point of the wind field is available.
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Fig. 3. Single run and MC simulation examples (first 30 sec-
onds) under fully connected graph. (a) EKF-WIO Rankine
wind estimation (b) EKF-SCI Rankine wind estimation (c)
EKF-SWEP Rankine wind estimation (d) Comparison of
RMSEk of EKF-WIO, EKF-SCI and EKF-SWEP under
Rankine wind

Figure 3(a) shows wind parameters estimation of EKF-WIO
from single run of MC 50 tests. The estimation performance
is worse compared to that of constant wind. The estimates
of wind parameters of some quadcopters converge to wrong
values, suggesting an observability issue when each quadcopter
is operated independently. Fig. 3(b) and Fig. 3(c) show the
estimation of wind parameters of EKF-SCI and EKF-SWEP
from one run of the MC tests. We observe that the estimation of
the wind parameters achieves consensus, converges faster and
produces less error since fusion of the wind estimates results in
better observability.
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Table 2. Rankine wind estimation RMSE of EKF-
WIO, EKF-SCI and EKF-SWEP under fully con-
nected graph (FG), ring graph (RG) and gossip

protocol (GP)

Method d1/d2 RMSEtrans RMSEsteady RMSEtotal

EKF-WIO d1 8.8900 1.9653 3.4603
EKF-WIO d2 14.9661 8.4296 10.3817

EKF-SWEP (FG) d1 6.3985 0.2723 1.2364
EKF-SWEP (FG) d2 10.0391 0.5442 2.1967

EKF-SCI (FG) d1 5.4799 0.2249 1.0048
EKF-SCI (FG) d2 8.5168 0.3146 1.5954

EKF-SWEP (RG) d1 6.7589 0.2836 1.3114
EKF-SWEP (RG) d2 10.3030 0.5485 2.2303

EKF-SCI (RG) d1 6.0164 0.2643 1.1449
EKF-SCI (RG) d2 11.0714 0.5625 2.4019

EKF-SWEP (GP) d1 6.6208 0.2993 1.3158
EKF-SWEP (GP) d2 10.1753 0.5455 2.2116

EKF-SCI (GP) d1 6.6103 0.2921 1.2788
EKF-SCI (GP) d2 10.1586 0.4314 1.9954

Table 2 compares the Rankine wind estimation performance
of EKF-WIO, EKF-SCI and EKF-SWEP under the fully con-
nected graph, the ring graph and the gossip protocol, respec-
tively. We observe that: 1) EKF without fusion shows much
larger RMSE for various communication graphs compared to
EKF with fusion. 2) EKF-SCI and EKF-SWEP perform simi-
larly. Fig. 3(d) shows the RMSEk of three methods under the
fully connected graph.

Based on the simulation results, both EKF fusion algorithms
achieve improved performance for multi-UAV wind field esti-
mation, when compared to EKF without fusion. Considering
the similar estimation performance and the ease of implemen-
tation, EKF-SCI would be a better option.

5. CONCLUSION

We formulate a spatial wind field estimation problem using
multiple quadcopters. We develop EKFs with the SCI and
SWEP fusion methods, which fuse wind state estimates as
well as their covariance. We conduct MC simulations and
evaluate the wind estimation performance for EKF-WIO, EKF-
SCI and EKF-SWEP under various communication topologies.
The MC simulations show that wind field estimation using
EKF with fusion methods has less error and converges faster
when compared to EKF without fusion. Future work includes
designing invariant EKF for spatial-temporal wind estimation
with multiple quadcopters.
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